Advertisement

Aggregation of small CsI clusters inside Ar clusters: ionization and fragmentation under soft X-ray excitation

  • A. KolmakovEmail author
  • J. O. Löfken
  • C. Nowak
  • F. Picucci
  • M. Riedler
  • C. Rienecker
  • A. Wark
  • M. Wolff
  • T. Möller
Conference paper

Abstract

Medium size Ar clusters 〈N〉 ~ 500 were used to pick-up and aggregate CsI molecules. The primary Ar cluster beam can he converted into a beam of bare or Ar-covered alkali halide clusters by varying the number of pick-up events. Soft X-ray photoionisation was used to monitor the depletion of the Ar shell around the guest cluster. It was found that. the Ar coverage controls the mechanism and degree of guest cluster ionization. For embedded CsI clusters charge transfer from the Ar shell is the dominant soft X-ray ionization process. Small alkali halide cluster fragments are ejected from the Ar host cluster. The detection of weakly bound stoichiometric (CsI) n + , clusters indicates that the Ar-shell prevents the desorption of neutral halogen atoms.

PACS

36.40.Qv Stability and fragmentation of clusters 36.40.Mr Spetroscopy and geometrical structure of clusters 78.70.Din X-ray absorbtion spectra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.E. Gough, M. Mengel. P.A Rowritree, Scoles: J. Chem, Phys. 83, 49: 58 (1985)Google Scholar
  2. A. Bartelt et al.: Phys. Rev. Lett. 77, 3525 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    S. Grebeney, J.P. Toennies, A.F. Vilesov: Science 279, 2083 (1998)ADSCrossRefGoogle Scholar
  4. M. Rutzen et al.: Z. Plays. D 38, 39 (1996)ADSGoogle Scholar
  5. 5.
    R. Pflaum, P. Pfau, K. Sattler, E. Recknagel: Surf. Sci. 156, 165 (1985)ADSCrossRefGoogle Scholar
  6. 6.
    R. Pflaum, K. Sattler, E. Recknagel: Chem. Phys. Lett. 138, 8 (1987)ADSCrossRefGoogle Scholar
  7. 7.
    X. Li, R.L. Whetten: J. Chem. Phys. 98 (8), 6170 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    T.P. Martin: Phys. Rep. 95 (30), 147 (1983)ADSGoogle Scholar
  9. 9.
    U. Landman, D. Scharf: J. Phys. Rev, Lett. 54, 1860 (1985)ADSCrossRefGoogle Scholar
  10. C.U.S. Larsson et al.: Nucl, instrum. Methods A 337, 603 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    O. Bjbrneholm, F. Federmann, F. Fössing, T. Phys, Rev. Lett. 74, 3017 (1995)ADSCrossRefGoogle Scholar
  12. E. Rühl et al.: Chem. Phys. Lett. 178, 558 (1991)ADSCrossRefGoogle Scholar
  13. 13.
    M. Lewerenz, B. Schilling, J.P. Toennies: J. Chem. Phys. 102, 8191 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    A.A. Scheidemann, V. Kresin, H. Hess: J. Chem, Phys. 107, 2839 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    B.E. Callicoatt, D.D. Mar, V.A. Apkarian, K.C. Janda: J. Chem. Phys. 105, 7872 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    C. Rienecker: Ph.D. thesis, Universität Hamburg (1998)Google Scholar
  17. 17.
    A. Kolmakov et al. (in preparation)Google Scholar
  18. 18.
    N. Schwentner, E.-E, Koch, J. Jortner: Electronic Excitation in Condensed Rare Gases, Springer, Tracts in Mod. Phys. 107 (1985)Google Scholar
  19. J. Xie et al.: J. Chem. Phys. 91, 612, (1989)ADSCrossRefGoogle Scholar
  20. 20.
    T.D. Mark, P. Scheier, M. Lezius, G. Wilder, A. Starnatovic: Z. Phys, D 12, 279 (1989)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • A. Kolmakov
    • 1
    Email author
  • J. O. Löfken
    • 1
  • C. Nowak
    • 1
  • F. Picucci
    • 2
  • M. Riedler
    • 2
  • C. Rienecker
    • 1
  • A. Wark
    • 2
  • M. Wolff
    • 2
  • T. Möller
    • 1
  1. 1.Hamburger Synchrotronstrahlungslabor HASYLAB at Deutsches Elektronen Synchrotron DESYHamburgGermany
  2. 2.II. Institut für ExperimentalphysikUniversität HamburgHamburgGermany

Personalised recommendations