Advertisement

Alkali halide cluster dianions: metastability and threshold sizes

  • J. Friedrich
  • P. Weis
  • J. Kaller
  • R. L. Whetten
  • M. M. Kappes
Conference paper

Abstract

Singly and multiply charged salt clusters (M n X n±m ±m ; MX = alkali halide) can be generated simply by spraying saline solutions, with or without electrical (charging) field. Dianion species (m = 2) show a clear threshold size at n = 5 − 7 (range) for all elements beyond the first row. These sizes (12 − 16 atoms) are much smaller than previously observed for alkali halides and are among the smallest cluster dianions yet found in gas phase. We describe the experiment and discuss the onsets in terms of ab initio density functional calculations on a number of representative sodium chloride cluster mono- and dianions.

PACS

36.40.Qv Stability and fragmentation of clusters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Schellen, R. Compton, L. Cederbaurn: Science 270, 5239 (1995)Google Scholar
  2. 2.
    S. Schauer, P. Williams, R. Compton:. Phys. R.v. Lett. 65, 625 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    A. Blades, P. Kebarle: J. Ana. Chern. Soc. 116, 10761 (1994)CrossRefGoogle Scholar
  4. 4.
    V. Berghof, T. Sommerfeld, L. Cederbaum: J. Phys, A 102, 5100 (1998)Google Scholar
  5. 5.
    M. Hendricks, M. Ceulemans, L. Vanquickenborne: J. Phys. Chem. 98, 1117 (1994)CrossRefGoogle Scholar
  6. 6.
    M. Schellet, L. Cederbaum: J. Chem. Phys. 99, 441 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    M, Schellen, L. Cecierhaurn: J. Phys. B 25, 2257 (1992)ADSCrossRefGoogle Scholar
  8. 8.
    J. Anacleto, S. Pleasance, R. Boyd: Org. Mass Spectrosc, 27, 660 (1992)CrossRefGoogle Scholar
  9. 9.
    C. Hop: J. Mass Spectrosc. 31, 1314 (1996)CrossRefGoogle Scholar
  10. 10.
    P. Weis, J. Friedrich, M. Kappes: to be publishedGoogle Scholar
  11. 11.
    The singly spaced peak multiplet commencing at m/z =- 169 is not a doubly charged species but instead corresponds to a superposition of Na2C13 H2O, Na2C13 .HDO and Na9C1.73 - D20 — as an experiment with H20 solution shows. This is the only water adduct observed. The H90/HDO contamination likely originates from the N2 desolVation gas and from surfaces previously exposed to H20Google Scholar
  12. 12.
    R. Ahlrichs, M. Bar, M. Hilser, H. Horn, C. Kblrnel: Chem. Phys. Lett. 162, 165 (1989)ADSCrossRefGoogle Scholar
  13. 13.
    A. Becke: Phys. Rev. A 38, 3098 (1989);ADSCrossRefGoogle Scholar
  14. J. Perdew: Phys. Rev. B 33, 8822 (1986)ADSCrossRefGoogle Scholar
  15. 14.
    See for example: T. Martin: Phys. Rep. 95, 167 (1983);Google Scholar
  16. M. Homer, F. Livingston, R. Whetten: Z. Phys. D 26, 201 (1993);ADSCrossRefGoogle Scholar
  17. X. Li, R. Whetten: J. Chem. Phys. 98, 6170 (1993);ADSCrossRefGoogle Scholar
  18. C. Ochsenfeld, R. Ahlrichs: Ber. Bunsenges, Phys. Chern. 98, 34 (1994)CrossRefGoogle Scholar
  19. 15.
    Of course for large enough n, there will be Mm.X.n 2— +9 isomers more stable than any possible fragment pair. However, preliminary calculations suggest that this occurs beyond the size range of interest hereGoogle Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • J. Friedrich
    • 1
  • P. Weis
    • 1
  • J. Kaller
    • 1
  • R. L. Whetten
    • 1
  • M. M. Kappes
    • 1
  1. 1.Institut für Physikalische ChemieUniversität KarlsruheKarlsruheGermany

Personalised recommendations