Advertisement

A plane-wave pseudopotential description of charged clusters

  • F. Nogueira
  • J. L. Martins
  • C. Fiolhais
Conference paper

Abstract

One of the most efficient approaches in computational cluster physics uses a plane-wave basis set and pseudopotentials to describe electron-ion interactions. This method — where the clusters are placed inside supercells — is restricted in its usual form to neutral systems because of the long-range interaction between a charged cluster and its periodic images. To eliminate this restriction, we propose to shield each charged cluster with a spherical shell having a symmetric charge that neutralizes the supercell. Furthermore, the shell is placed in such a way that it cancels the electric dipole of the charged cluster. We present relaxed geometries and cohesive energies of Open image in new window , N = 2 − 9 and 21, obtained with Langevin quantum molecular dynamics. Our local density approximation structures are very similar to those found in other first principles calculations. Vertical and adiabatic ionization energies of Na N , N = 2, 3, 6, and 8 are displayed. We also show results for Open image in new window , Open image in new window .

PACS

36.40.Wa Charged clusters 31.15. Ar Ab initio calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Ihm, A. Zunger, M.L. Cohen: J. Phys. C: Solid State Phys, 12, 4409 (1979)ADSCrossRefGoogle Scholar
  2. 2.
    W.E. Pickett: Comp. Phys. Rep. 9, 115 (1989)ADSCrossRefGoogle Scholar
  3. 3.
    U. ROthlisberger, W. Andreoni: J. Chem. Phys, 94, 8129 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    N. Bingelli, J.L. Martins, J.R. Chelikowsky: Phys. Rev. Lett. 68, 2956 (1992)ADSCrossRefGoogle Scholar
  5. 5.
    M.R. Jarvis, I.D. White, R.W. Godby, M.C. Payne: Phys, Rev. B 56, 14 972 (1997)Google Scholar
  6. 6.
    M.T. Yin, M.L. Cohen: Phys. Rev. B 26, 3259 (1982)ADSCrossRefGoogle Scholar
  7. 7.
    J.M. Pitarke, A.G. Eguiluz: Phys. Rev. B 57, 6329 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    J.P. Perdew, A. Zunger: Phys. Rey, B 23, 50–18 (1981)Google Scholar
  9. 9.
    D.M. Ceperley, B.J. Alder: Phys. Rev. Lett. 45, 566 (1980)ADSCrossRefGoogle Scholar
  10. 10.
    C. Elsässer, M. Fähnie, C.T. Chan, K.M. Ho: Phys. Rev. B 49, 13 975 (1994)Google Scholar
  11. 11.
    N. Troullier, J.L. Martins: Solid State Commun. 74, 613 (1990); N. Troullier, J.L. Martins: Phys. Rev. B 43, 1993 (1991)Google Scholar
  12. 12.
    L. Kleinman, D.M. Bylander: Phys. Rev. Lett. 48, 1425 (1982)ADSCrossRefGoogle Scholar
  13. 13.
    S. Martin, J. Chevaleyre, S. Valigiiat,J,P. Perrot, M. Broyer, B. Cabaud, A. Hoareau; Chem. Phys. Lett, 87, 235 (1982)ADSCrossRefGoogle Scholar
  14. 14.
    P. Kusch, M.M. Hessel: J. Chem. Phys, 68, 2591 (1978)ADSCrossRefGoogle Scholar
  15. 15.
    V. BOnaZie-KouteckY, J. Pittner, C. Fuchs, P. Fantucci, M.F. Guest, J. KouteckY: J. Chem. Phys. 104, 1427 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    F. Nogueira, A. Vieira, M. Brajczewska, C. Fiolhais: in Condensed Matter Theories, ed. by J. da Providência et al. ( Nova Science, New York 1998 )Google Scholar
  17. 17.
    V. BonaZie-KouteckY, P. Fantucci, J. KouteckY: Chem, Rev. 91, 1035 (1991)CrossRefGoogle Scholar
  18. 18.
    R.N. Barnett, U. Landman, G. Rajagopal: Phys. Rev. Lett. 67; 3058 (1991)Google Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • F. Nogueira
    • 1
  • J. L. Martins
    • 2
    • 3
  • C. Fiolhais
    • 1
  1. 1.Departamento de Física and Centro de Física ComputacionalUniversidade de CoimbraCoimbraPortugal
  2. 2.Departamento de FísicaInstituto Superior TécnicoLisboaPortugal
  3. 3.INESCLisboa CodexPortugal

Personalised recommendations