Stability and electronic properties of pure aluminum clusters

  • F. Duque
  • A. Mañanes
Conference paper


The electronic and geometrical structures of neutral and charged clusters AI N , N 00000 22, are calculated using ab initio density functional theory (DFT). The geometries obtained are in agreement with those of ab initio molecular dynamics. The binding energy is proportional to the inverse of the cluster radius, with a slight overhinding with respect to the experiment. The vertical ionization potentials follow the oscillations found experimentally. The photoelectron density of states for the anions are in agreement with the experimental results,The s, p, and d characters of the Kohn—Sham orbitals are obtained as a function of the size, and it is shown that the s—p hybridization starts at Al8 both for neutral and anionic clusters. The deeper Kohn—Sham eigenvalues follow the pattern of a spherical jellium-like model. The occupation of the p band is found to be one electron per atom in the cluster; this agrees with experimental results.


36.40.Mr Spectroscopy and geometrical structure of clusters 61.46.+w Clusters, nanoparticles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.F. Jarrold: in Clusters of Atoms and Molecules I, ed. by H. Haberland ( Springer, Berlin 1995 ) p. 288Google Scholar
  2. 2.
    W. de Heer: Rev. Mod. Phys. 65, 611 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    M. Brack: Rev, Mod. Phys. 65, 677 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    X. Li, H. Wu, X.B. Wang, L.S. Wang: Phys. Rev. Lett. 81, 1909 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    G. Ganteför, W. Eberhardt: Chem. Phys. Lett. 217, 600 (1994); C.-Y. Cha, G. Ganteför, W. Eberhardt: J. Chem. Phys. 100, 995 (1994)ADSGoogle Scholar
  6. 6.
    W. Kohn: in Density Functional Theory, ed. by E.K.U. Gross, R.M. Dreizier ( Plenum Press, New York 1995 )Google Scholar
  7. 7.
    M.P. Ifiig-uez, M.J. Lapez, J.A. Alonso, J.M. Mel:: Z. Phys.D 11, 163 (1989)ADSGoogle Scholar
  8. 8.
    J.G. Aguilar, A. Mafianes, M.J. Lopez, M.P. Ifiiguez, J.A. Alonso: Int. J. Quantum Chern. 56, 589 (1995); A. MafianeS, M.P. Ifiiguez, M.J. López, J.A. Alonso: Phys. Rev. B 42, 5000 (1990)Google Scholar
  9. 9.
    G. te Velde, E.J. Baerends: J. Comput. Chem. 99, 84 (1992); P.M. Boerriger, G. te Velde, E.J. Baeredens: J. Quantum Chem. 33, 87 (1988)Google Scholar
  10. 10.
    S.H. Vosko, L. Wilk, M. Nusair: Can. J. Phys. 58, 1200 (1980)ADSCrossRefGoogle Scholar
  11. 11.
    P. Calaminici, N. Russo, M. Toscano: Z. Phys. D 33, 281 (1995); R.O. Jones: J. Chem. Phys. 99, 1194 (1993)CrossRefGoogle Scholar
  12. 12.
    J.E. Fowler, J.M. Ugalde: Phys. Rev, A 58, 383 (1998); S.H. Yang, D.A. Drabolcl, J.B. Adams, A. Sachdev: Phys. Rev. B 47, 1567 (1993); H.-P. Cheng, R.S. Berry, R.L. Whetten: Phys. Rev, B 43, 10 647 (1991)Google Scholar
  13. 13.
    J. Akola, H. H.kkinen, M. Manninen: Phys. Rev. B 58, 3601 (1998)ADSGoogle Scholar
  14. 14.
    H. Handschuh, G. Gantefk, W. Eberhardt: Rev. Sci. in-strum. 66, 3838 (1995)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • F. Duque
    • 1
  • A. Mañanes
    • 1
  1. 1.Departamento de Física Moderna, Facultad de CienciasUniversidad de CantabriaSantanderSpain

Personalised recommendations