Advertisement

The Mainz Cluster Trap

Ion storage techniques at work in atomic cluster research
  • L. Schweikhard
  • S. Krückeberg
  • K. Lützenkirchen
  • C. Walther
Conference paper

Abstract

When cluster ions are stored by electromagnetic forces they are available in the gas phase for extended preparations and investigations. Over the last decade a Penning trap (Ion Cyclotron Resonance) apparatus has been constructed and further developed with respect to metal cluster research at the Institute of Physics at Mainz. It allows to capture and accumulate ion bunches injected from an external cluster source and to manipulate the ions motion, i.e. select and center the clusters of interest. The interactions that have been investigated include those with inert and chemically reactive gases, photons and electrons. Multiple mass spectrometric steps such as fragment ion selection can be used to disentangle complex reactions or interfering reaction channels. A brief introduction into the principles of ion trapping and a short overview of the history and experimental setup at Mainz are given. The advantages of ion storage with respect to extended preparation of the trapped cluster ensemble and with respect to extended reaction periods are exemplified by measurements of the collision induced dissociation of Ag 16 2+ and by time-resolved observation of the photodissociation of V 12 + , References are given both to the investigations performed at the Mainz Cluster Trap as well as to other experimental arrangements and measurements.

PACS

36.40.Wa Charged clusters 07.75.+h Mass spectrometry and related techniques 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See previous ISSPIC proceedings, e.g. Z. P1 s. D 19–20 (1991), ibid. 26 (1993)Google Scholar
  2. Surf. Rev. Lett. 3 (1996), Z. Phys. 35 D 40 (1997)Google Scholar
  3. 2.
    K.L. Busch, G.L. Glish, S.A. McLuckey: Mass Spectrometry-Mass Spectrometry (VCH, Weiriheirri 1988 )Google Scholar
  4. 3.
    P. Hyelplund Eur. Phys. J. D, this issue 36.Google Scholar
  5. 4.
    L.S. Brown, G. Gabrielse: Rev. Mod. Phys. 58, 233 (1986)ADSCrossRefGoogle Scholar
  6. 5.
    R.E. March, R.J, Hughes: Quadrupole Storage Mass Spec- 37. trometry ( John Wiley and Sons, New York 1989 ) 38.Google Scholar
  7. 6.
    A.G. Marshall, L. Schweikhard: Int; J. Mass Spectrom. Ion Processes 118–119, 37 (1992)Google Scholar
  8. 7.
    R.F. Wuerker: J. AppL Phys. 30. 342 (1959) 39.Google Scholar
  9. 8.
    D.B. Cameron, J.H. Parks: Chem. Phys. Lett, 272, 18 (1997) 40.Google Scholar
  10. 9.
    M. Maier-Borst; D.B. Cameron, M. Rokni, J.H. Parks: Phys. Rev. A 59; R3162 (1999)Google Scholar
  11. 10.
    S. Wolfeth: Phys. Rev. Lett. 74. 4177 (1995); L. Wtiste: 41.Google Scholar
  12. S. Wolfeth: Z. Phys. Chem. 196, 1 (1996) 42.Google Scholar
  13. 11.
    D. Geruch: Phys. Scr. T 59, 256 (1995)ADSGoogle Scholar
  14. 12.
    L. Schweikhard: Int. J. Mass Spectrom. Ion Processes 43. 141, 77 (1995)ADSCrossRefGoogle Scholar
  15. 13.
    L. Schweikhard, A.G. Marshall- J. Am, Soc. Spec- 44. tram. 4, 433 (1993)Google Scholar
  16. 14.
    G. Bollen: J. Appl, Phys. 68, 43: 55 (1990) 45.Google Scholar
  17. 15.
    G. Savard: Phys. Lett. A 158, 247 (1991) 46.Google Scholar
  18. 16.
    M.B. Coniisarow; A.G. Marshall: Chem. Phys: Lett. 25, 47. 282 (1974)Google Scholar
  19. 17.
    A.G. Marshall. F.R. Verdun: Fourier Transforms ia N.ì1R, Optical, and Mass Spectrometry ( Elsevier, Amsterdam 1990 )Google Scholar
  20. 18.
    H.-J. Kluge: Z. Phys. D 3, 189 (1986)ADSCrossRefGoogle Scholar
  21. 19.
    G. Dietrich: Cheng. Phys. Lett, 252. 141 J. Mass Spectrom. Ion Processes 157–158, 319Google Scholar
  22. 20.
    St. Becker: Int., J. Mass Spectroin. Ion Processes 99, 53 (1990)Google Scholar
  23. G. Bollen et al,: Nucl.Instri.un, Methods A 368, 675 (1996)Google Scholar
  24. 21.
    H. Sclinatz: Nucl his.1 lléthods A 251. 17 (1986)Google Scholar
  25. 21.
    A. de Heer: Rev. Mod. Phys. 65, 611 (1993); M. Brack, ibtd. 65, 677 (1993)CrossRefGoogle Scholar
  26. 22.
    L. Schweikhard: Rev. Sci. Instrum. 60. 2637. (1989)ADSCrossRefGoogle Scholar
  27. 23.
    Hibid. 61. 1055 (1990); Int. J. Mass Spectrom. Ion Processes 89 (19889)Google Scholar
  28. 24.
    Rapid Connlnni. Mass Spectrorr, 4, 360 (1299)Google Scholar
  29. 25.
    J.M. Alford: Int. J. Mass Spectrum. Ion Processes 72. 33 (1986)CrossRefGoogle Scholar
  30. 26.
    I.P. Irion, A, Seliiier: Z. Phys. Chem. 161. 233 (1989)Google Scholar
  31. 27.
    Irion: Int, J. Mass Spectrom. Ion Processes 96, 27 (1990)Google Scholar
  32. 28.
    M. Lindinger; Z. Phys. D 20, 441 (1991)ADSCrossRefGoogle Scholar
  33. 29.
    Alber, Rev. Sci, Instrum, 64. 1845 (1993) St.Google Scholar
  34. 30.
    Becker: Rev. Sci. Instrum. 66, 4902 (1995)Google Scholar
  35. 31.
    L. Schweikhard: Phys. Scr. T 59. 236 (1995)ADSCrossRefGoogle Scholar
  36. 32.
    H. Weidele et al,: Z. Phvs, D 20, 411 (1991)Google Scholar
  37. 33.
    H.-U, Hasse: Int. J. Mass Spectrom. Ion Processes 132, 181 (1994)Google Scholar
  38. 34.
    T. Schindler: Chem. Phys. Lett. 250, 301 (1996)ADSCrossRefGoogle Scholar
  39. 35.
    Examples are given by P.A. Limbach: J. Am, Chem. Soc. 113. 6795 (1991)Google Scholar
  40. H.S. Kim: Chem. Phys. Lett, 224, 589 (1994)ADSCrossRefGoogle Scholar
  41. 36.
    S.A. Lee: ICR-Ion Trap NEWSLETTER. ed. by A.G. Marshall, Tallahassee, 30, 25 (1993)Google Scholar
  42. 37.
    S. Krückeberg et al: Lilt. J. Mass Spectrom. Ion Processes 155, 141 (1996)Google Scholar
  43. S. Krückeberg: Hyperfine Interact. 108, 107 (1997)ADSCrossRefGoogle Scholar
  44. S. Krickeberg: Z. Phys, D 40, 341 (1997)ADSCrossRefGoogle Scholar
  45. 38.
    P. Schnabel: J. Phys. Chem. 95, 9688 (1991)CrossRefGoogle Scholar
  46. P. Schnabel: Angew. Chem. 104. 633 (1992)CrossRefGoogle Scholar
  47. 39.
    J.L. Elkind: J. Cheni. Phys. 88, 5215 (1988)ADSCrossRefGoogle Scholar
  48. 40.
    St. Becker: Rapid Commun. Mass Spectrom. 8, 401 (1994).Google Scholar
  49. St. Becker: Comput. Mater. Sci. 2, 633 (1994)Google Scholar
  50. St. Becker: Z. Phys. D 30, 341 (1994)Google Scholar
  51. 41.
    G. Dietrich; Ber. Bunsenges. Phys. Chem. 98, 1608 (1994)CrossRefGoogle Scholar
  52. 42.
    L. Schweikhard: Hyperfine Interact. 99, 97 (1996)ADSCrossRefGoogle Scholar
  53. S. Krückeberg: Rapid Commun. Mass Spectrom. 11, 455 (1997)CrossRefGoogle Scholar
  54. 43.
    J. Ziegler et al,: Hyperfine Interact. 115, 171 (1998)ADSCrossRefGoogle Scholar
  55. 44.
    L. SchweikhardRapid Commun. Mass Spectrom, 11. 1.592 (1997“)Google Scholar
  56. 45.
    S. Krückeberg Eur. Phys. J. D, fission lauriers, this issueGoogle Scholar
  57. 46.
    G. Dietrich: Cheng. Phys. Lett, 252. 141 J. Mass Spectrom. Ion Processes 157–158, 319Google Scholar
  58. 47.
    G. Dietrich: Chem. Phys. Lett. 259, 397 (1996)ADSCrossRefGoogle Scholar
  59. 48.
    R. Rousseau et al,: Chem. Phys. Lett. 295, 41 (1998)Google Scholar
  60. C. Walther: Z. Phys. D 38, 51 (1996)ADSCrossRefGoogle Scholar
  61. C. Walther Chem. Phys. Lett, 25, 77 (1996), 262.668 (1990):Google Scholar
  62. M. Lindinger: Z. Phys: D 40, 347 (1997)Google Scholar
  63. L. Schweikhard: Rapid Commun. Mass Spectrum. 11, 1624 (1997)CrossRefGoogle Scholar
  64. U. Hild: Phys, Rev, A 57. 2786 (1998)ADSCrossRefGoogle Scholar
  65. 49.
    H. Weidele: Surf. Rev. Lett. 3, 541 (1996)CrossRefGoogle Scholar
  66. 50.
    H. Veidele Eur. Phys. J. D, Coltisionaa activacion this issue C. Walther to be publishedGoogle Scholar
  67. 51.
    S. Krickeberg,: Electron induced this issueGoogle Scholar
  68. 52.
    A. Herlert, First observation of doubly charged negative gold cluster ions. Phys, Sec., in pressGoogle Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • L. Schweikhard
    • 1
  • S. Krückeberg
    • 1
  • K. Lützenkirchen
    • 2
  • C. Walther
    • 2
  1. 1.Institut für PhysikJohannes Gutenberg-UniversitätMainzGermany
  2. 2.Institut für KernchemieJohannes Gutenberg-UniversitatMainzGermany

Personalised recommendations