Advertisement

Electronic and magnetic structure of artificial atoms

  • S. M. Reimann
  • M. Koskinen
  • J. Kolehmainen
  • M. Manninen
  • D. G. Austing
  • S. Tarucha
Conference paper

Abstract

The concept of shell structure has been found useful in the description of semiconductor quantum dots, which today can be made so small that they contain less than 20 electrons. We review the experimental discovery of magic numbers and spin alignment following Hund’s rules in the addition spectra of vertical quantum dots, and show that these results compare well to model calculations within spin density functional theory. We further discuss the occurrence of spin density waves in quantum dots and quantum wires. For deformable two-dimensional quantum dots (for example, jellium clusters on surfaces), we study the interplay between Hund’s rules and Jahn—Teller deformations and investigate the effect of magnetic fields on the ground-state shapes.

PACS

71 Electronic structure 73.20.Dx Electron states in low-dimensional structures 85.30.Vw Low-dimensional quantum devices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Ekardt: Phys. Rev. B 29, 1558 (1984)ADSCrossRefGoogle Scholar
  2. 2.
    W. Knight et al.: Phys. Rev, Lett. 52, 2141 (1984)ADSCrossRefGoogle Scholar
  3. 3.
    M. Brack: Rev. Mod. Phys. 65, 677 (1993)ADSCrossRefGoogle Scholar
  4. L.P. Kouwenhoven et al.: “Electron transport in quantum dots”, in Proceedings of the Advanced Study Institute on Illesoscopic Electron Transport,ed. by L.L. Sohn, L.P. Kouwenhoven, G. Schön (1997)Google Scholar
  5. 5.
    M.A. Kastner: Rev. Mod. Phys. 64, 849 (1992); Phys. To-clay 46, 24 (1993); R.C. Ashoori: Nature 379, 413 (1996)Google Scholar
  6. M. Persson et al.: J. Phys. (Cond. Matter) 7, 3733 (1995); Physica B 194, 1273 (1994)Google Scholar
  7. 7.
    M. Brack, R. Bhaduri: “Semiclassical Physics”, in Frontiers in Physics, ed. by D. Pines, vol. 96 ( Addison, Reading, Massachusetts 1997 )Google Scholar
  8. 8.
    H. Nishioka, K. Hansen, B.R. Mottelson: Phys. Rev. B 42, 9377 (1990)ADSCrossRefGoogle Scholar
  9. S.M. Reimann et al.: Z. Phys. B 101, 377 (1996)Google Scholar
  10. S. Tarucha et al.: Phys. Rev, Lett. 77, 3613 (1996)Google Scholar
  11. 11.
    D. Pfannkuche, V. Gudmundsson, P.A. Maksym: Phys. Rev. B 47, 2244 (1992); P. Hawulak, D. Pfannkuche: Phys. Rev. Lett, 70, 485 (1993); P.A. Maksyrn: Phys. Rev. B 53, 10 871 (1996)Google Scholar
  12. 12.
    M. Koskinen, M. Manninen, SM. Reimann: Phys. Rev. Lett. 79, 1389 (1997)ADSCrossRefGoogle Scholar
  13. T. Ezaki, N. Mori, C. Hamaguchi; Phys. Rev, B 56, 6428 (1997); S. Nagaraja et al.: Phys, Rev, B 56, 15 752 (1997); Iii-Ho Lee et al.: Phys. Rev. B 57, 9035 (1998);Google Scholar
  14. 14.
    YR. Zeng, B. Goodman, R.A. Serota: Phys, Rev. B 47, 15 660 (1992); 0. Steffens, U. Rössler, M. Suhrke: Europhys. Lett, 42, 529 (1998)Google Scholar
  15. 15.
    P. Hohenberg, W. Kohn: Phys. Rev. 136, 5864 (1964);CrossRefMathSciNetGoogle Scholar
  16. W. Kohn, L.J. Sham: Phys. Rev. 140, A1133 (1965);ADSCrossRefMathSciNetGoogle Scholar
  17. U. von Barth, L. Hedin: J. Phys. C 5, 1629 (1972).ADSCrossRefGoogle Scholar
  18. S.M. Reimann et al.: Phys. Rev. B 56, 12 147 (1997); ibid. Phys. Rev. B 58, 8111 (1998)Google Scholar
  19. S. Tarucha et al.: Superlattices Microstruct, 18, 121 (1995); D.G. rusting et al.: Semicond. Sci. Technol. 11, 388 (1996)Google Scholar
  20. B. Tanatar, D.M. Ceperley: Phys. Rev, B 39, 5005 (1989)ADSCrossRefGoogle Scholar
  21. M. Ferconi, G. Vignale: Phys. Rev. B 50, 14 722 (1994); V. Gudruundsson, J.J. Palacios: Phys. Rev. B 52, 11 266 (1995); M.I. Lubin, O. Heinonen, M.D. Johnson; Phys. Rev. B 56, 10 373 (1997); Q. Heinonen, J.M. Kinaret, M.D. Johnson: [Cond-Mat/977121681; M. Pi et al.: Phys. Rev. B 57, 14 783 (1998)Google Scholar
  22. 20.
    The deviations at N = 14 and around N = 20 might generally be due to deformation of the quantum dot, which already for very small distortions changes the shell structure for larger N considerablyGoogle Scholar
  23. 21.
    A.W. Overhauser: Phys.:Rev. Lett. 4, 462 (1960); Phys, Rev. 128,1437 (1962); Phys. Rev. 167, 691 (1968)CrossRefGoogle Scholar
  24. S. Tarucha et al.: Jpn. J. Appl, Plays, 36, 3917 (1997)Google Scholar
  25. K.J. Thomas et al.: Phys, Rev. Lett. 77, 135 (1996)Google Scholar
  26. 24.
    C.-K. Wang, K.-F. Berggren: Phys, Rev. B 57, 4. 552 (1998)CrossRefGoogle Scholar
  27. 25.
    N. Zabala, M.J. Puska, R.M. Nierninen: Phys. Rev. Lett. 80, 3336 (1998)ADSCrossRefGoogle Scholar
  28. 26.
    H. Brune: Surf. Sci. Rep. 31, 121 (1998)ADSGoogle Scholar
  29. 27.
    M.Y. Lai, Y.L. Wang: Phys. Rev. Lett. 81, 164 (1998)ADSCrossRefGoogle Scholar
  30. 28.
    G. Vignale, M. Rasait: Phys. Rev. B 37, 10 685 (1988)Google Scholar
  31. 29.
    M. Koskinen et al.: contribution to these proceedingsGoogle Scholar
  32. 30.
    A.H. McDonald, S.-R. Eric Yang, M.D. Johnson: Austr. J. Phys. 46, 345 (1993)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • S. M. Reimann
    • 1
  • M. Koskinen
    • 1
  • J. Kolehmainen
    • 1
  • M. Manninen
    • 1
  • D. G. Austing
    • 2
  • S. Tarucha
    • 3
  1. 1.Department of PhysicsUniversity of JyväskyläJyväskyläFinland
  2. 2.NTT Basic Research LaboratoriesAtsugi-shi, Kanagawa 243-01Japan
  3. 3.Physics DepartmentUniversity of TokyoBunkyo-ku, TokyoJapan

Personalised recommendations