Cluster geometries from density functional calculations — prospects and limitations

  • R. O. Jones
Conference paper


The use of density functional methods to calculate the structures and energies of clusters of atoms is discussed. Applications to phosphorus and sulphur show that unexpected structures occur even in small clusters. Calculations of many isomers of carbon clusters from C4 to C32.) (n even) show striking results, with periodic patterns in several structural classes. Gradient corrections are signiacant, but regular within a. given cluster type. Some strengths and limitations of the approach are discussed.


36.40.−c Atomic and molecular clusters 61.46.+w Clusters, nanoparticles, and nanocrystalline materials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.R. Hoare, J.A. McInnes: Adv. Phys. 32, 791 (1983)ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    L.T. Wille, J. Venn J. Phys, A 18, L419, L11. 1. 3 (1985)Google Scholar
  3. 3.
    See, for example, R.O. Jones, O. Gunnarsson: Rev. Mod. Phys. 61, 689 (1989); Density Functional Theory, NATO ASI Series, Series B: Physics, Vol. 337, ed. by Gross, R.M. Dreizier ( Plenum, New York 1. 995 )Google Scholar
  4. 4.
    R. Car, M. Parrinello: Phys. Rev. Lett, 55, 2471 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    R.O. Jones, D. Hohl: J. Chem. Phys, 92, 6710 (1990)ADSCrossRefGoogle Scholar
  6. R.Q. Jones, G. Seifert: J. Chem. Phys. 96. 7564 (1992)ADSCrossRefGoogle Scholar
  7. 6.
    S. Hunsicker, R.O. Jones, C. Gantefär: J. Chem. Phys. 102, 5917 (1995)ADSCrossRefGoogle Scholar
  8. 7.
    E.A. Rohifing, D.M. Cox, A. Kaldor: J. Cchwr(133).!hern. Phys. 81, 3322 (198.4)Google Scholar
  9. 8.
    H.W. Kroto, JR. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley: Nature 318, 162 (1985)ADSCrossRefGoogle Scholar
  10. 9.
    A detailed survey’ of carbon cluster research to 1989 has been given by W. Weltner, In. R.J. Van Zee: Chem. Rev. 89. 1713 (1989)Google Scholar
  11. 11.
    P.W. Fowler, D.E. Mariolopoulos: An Atlas of Pullerenes ( Clarendon Press. Oxford 1995 )Google Scholar
  12. 11.
    A.D. Becke: Phys. Rev. A 38, 3098 (1988) [exchange energy] J.P. Perdew: Phys. Rev. B 33, 8822 (1986) (correlation energy]Google Scholar
  13. 12.
    DGauss prog-ram, UniChem package of Oxford Molvcrda?: Group (triple zeta basis with polarization functions T VP, auxiliary basis A2). LSD approximation: S.H. Vosko, L. Wilk, M. Nusair: Can. J. Phys. 53, 1385 (1950)Google Scholar
  14. 13.
    R.O. Jones: J. Chem. Phys. 110, 5189 (1999)ADSCrossRefGoogle Scholar
  15. 14.
    See, for example, P. Ballone, R.O. Jones: J. Chain. Phys. 100, 4941 (1994) [P, AsGoogle Scholar
  16. 15.
    K. Raghayachari: in Recent Advance:3 in the Chemistry and Physics of Fullerenes and Related Materials, Vol. 3, ed. by K.M. Kadish, R.S. Ruoff (Electrochemical Society, Pennington, New Jersey 1996 ) p. 894Google Scholar
  17. 16.
    See, for example, K.S. Pitzer, E. Clementi: J. Am. Chem. Soc. 81, 4477 (1959);CrossRefGoogle Scholar
  18. R. Hoffmann, Tetrahedron 22, 521 (1966)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • R. O. Jones
    • 1
  1. 1.Institut für FestkörperforschungForschungszentrum JülichJülichGermany

Personalised recommendations