Advertisement

Conductance quantization in multiwalled carbon nanotubes

  • Ph. Poncharal
  • St. Frank
  • Z. L. Wang
  • W. A. de Heel
Conference paper

Abstract

We present results of carbon nanotube conductance measurements. The experiments were performed using an scanning probe microscope (SPM) system where a carbon nanotube fiber is connected to the SEM tip and then lowered into a liquid mercury contact. Experiments were also performed using a modified transmission electron microscope (TEM) specimen holder supplied with piezo and micrometer positioning system. Thus the contacting process of the nanotubes 1,vith the mercury colild be ntonitorerl while simultaneously recording. the conductance, These measurements and observations confirm previously reported conductance quantization (Frank et al.: Science 280. 1744 (1998)) of the nanotubes while providing additional details concerning the mercury nanotube contacts. We also report conductance versus voltage characteristics of carbon nanotubes.

PACS

85.40.−e Microelectronics: LSI, VLSI, ULSI: integrated circuit fabrication technology 61.46.+w Clusters, nanoparticles, and nanoc, rystalline materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Frank, P. Poncharal, Z.L. Wang, W.A. de Beer: Science 280, 1144 (1998)Google Scholar
  2. 2.
    G. Baumgartne,: Phys. Rev. B 55, 6704 (1997)CrossRefGoogle Scholar
  3. T.W. Ebbesen et al.: Nature 382, 54 (1996)Google Scholar
  4. L. Langer et al.: Phys. Rev. Lett. 76, 479 (1996)Google Scholar
  5. 5.
    A. Bachtold, C. Strunk, C. Schonenberger, J.-P. Salvetat, L. Forro: Electrical properties of single carbon nanotubes, ed. by II. Kuzmany, J. Fink, M. Mehring, S. Roth, International Winterschool on Electronic Properties of novel Materials “Molecular Nanostructures” (AIP, New York 1998 ) p. 65Google Scholar
  6. 6.
    H. Dai, E.W. Wong, C.M. Lieber: Science 272, 523 (1996)ADSCrossRefGoogle Scholar
  7. R. Landauer: Philos. Mag. 21, 863 (1970)ADSCrossRefGoogle Scholar
  8. 8.
    S. Datta: Electronic transport properties in rnesoscopic systems ( Cambridge University Press, Cambridge 1995 )CrossRefGoogle Scholar
  9. 9.
    J.W. Mintmire, B.I. Dunlap, C.T. White: Phys. Rev. Lett. 68, 631 (1992)ADSCrossRefGoogle Scholar
  10. 10.
    J.W. Mintrnire, C.T. White: Carbon 33, 893 (1995)CrossRefGoogle Scholar
  11. 11.
    W. Tian, S. Datta: Phys. Rev. B 49, 5097 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    L. Chico, L.X. Benedict, S.G. Louie, M.L. Cohen: Phys. Rev. B 54, 2600 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    K.B. Shelimov et ai.: Chem. Phys. Lett, 282, 429 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    D. Ugarte: Z. Phys. D 26, 150 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    T.W. Ebbesen, P.M. Ajayan: Nature 358, 220 (1992)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • Ph. Poncharal
    • 1
  • St. Frank
    • 1
  • Z. L. Wang
    • 2
  • W. A. de Heel
    • 1
  1. 1.School of PhysicsGeorgia Institute of TechnologyAtlantaUSA
  2. 2.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations