Advertisement

Properties of silicon—carbon-cluster-assembled films

  • P. Kéghélian
  • P. Mélinon
  • A. Perez
  • J. Lermé
  • C. Ray
  • M. Pellarin
  • M. Broyer
  • J. L. Rousset
  • F. J. Cadete Santos Aires
Conference paper

Abstract

We have investigated SiC films, obtained by the low-energy cluster beam deposition (LECBD) technique, and using AFM Raman and XPS spectroscopies. We produce these films at room temperature and in an ultrahigh vacuum environment to protect them from the pollution. The inner morphology of the clusters is close to an amorphous-like structure. However, most of the theoretical models predict an sp 3 hybridization, in disagreement with our experimental results. We find that the films are composed mainly by free components formed by rich silicon, rich carbon, and rich SiC regions, respectively, In our case, the mean hybridization of the rich carbon region is mainly sp n -like with 2 < n < 3.

PACS

61.46.+w Clusters, nanoparticles, and nanocrystalline materials 81.15.-z Methods of deposition of films and coatings; film growth and epitaxy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    MRS Bulletin, March 1997, Vol, 22, no. 3Google Scholar
  2. 2.
    T. Tiedje, B. Abeles, P.D. Persans, B.G. Brooks, B.D. Cody: J. Non-Cryst. Solids 66, 345 (1984)ADSCrossRefGoogle Scholar
  3. 3.
    F. Finocchi, G. Galli. M. Parinello, C.M. Bertoni: Phys. Rev. Lett. 68, 3044 (1992)ADSCrossRefGoogle Scholar
  4. 4.
    P. Mélinon, V, Paillard, V. Dupuis, A. Perez, P„iensen, A. Hoareau, M. Broyer, J.L. Vialle, M. Pellarin, B. Bague-nard, J. Lermé: Int. j. Mod. Phys. B 9, 339 (1995)Google Scholar
  5. 5.
    N. Bernhard, G.H. Bauer: Phys. Rev. B 52, 8829 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    R.C. Fang, L. Ley: Phys. Rev. B 40, 3818 (1989)ADSCrossRefGoogle Scholar
  7. 7.
    L. Calcagno, G. Compagnini, G. Foti, M.G. Grimaldi, P. Mitsumeci: Nucl. Instrum. Methods Phys. Res. B 120, 121: (1996)Google Scholar
  8. V. Paillard, P. Mélinon, V. Dupuis, J.P. Perez, A. Perez, B. Champagnon: Phys. Rev. Lett. 71, 4170 (1993)ADSCrossRefGoogle Scholar
  9. 9.
    P. Mélinon, P. Kéghélian, B. Prével, A. Perez, G. Guiraud, J. LeBrusq,.J. Lermé, M. Pellarin, M. Broyer:.1. Chem. Phys. 107, 10 278 (1997); P. Mélinon, P. Kéghélian, B. Prével, V. Dupuis, A. Perez, B. Champagnon, Y. Guyot, M. Pellarin, J. Lermé, M. Broyer, J.L. Rousset, P. Delichere: J. Chem. Phys. 108, 4607 (1998)Google Scholar
  10. 10.
    M. Pellarin, C. Ray, P. Mélinon, J. Lermé, J.L. Vialle, P. Kéghélian, A. Perez, M. Brayer: Chem. Phys. Lett. 27r, 96 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    C. Ray, M. Pellarin, J. Lermé, J.L. Vialle, M. Broyer, X. Blase, P. Mélinon, P. Kéghélian, A. Perez: Phys. Rev. Lett. 80, 5365 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    G.H. Miller, R. Dandaloff, H. Bilz: J. Non-Cryst. Solids 42, 87 (1980)CrossRefGoogle Scholar
  13. J.C. Angus, Y. Wang: in Diamond and Diamond-like Films and Coatings,ed. by R.E. Clausing et al.,NATO AST Series B: Physics Vol. 266 (Plenum Press, New York 1990) pp. 178–190Google Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • P. Kéghélian
    • 1
  • P. Mélinon
    • 1
  • A. Perez
    • 1
  • J. Lermé
    • 2
  • C. Ray
    • 2
  • M. Pellarin
    • 2
  • M. Broyer
    • 2
  • J. L. Rousset
    • 3
  • F. J. Cadete Santos Aires
    • 3
  1. 1.Département de physique des matériauxUniv. Claude Bernard-Lyon IVilleurbanne CedexFrance
  2. 2.Laboratoire de Spectrométrie Ionique et MoléculaireUniv. Claude Bernard-Lyon IVilleurbanne CedexFrance
  3. 3.2 Av. Albert EinsteinInstitut de Recherches sur la Catalyse CNRSVilleurbanne CedexFrance

Personalised recommendations