Laser-induced manipulation of the size and shape of small metal particles: Towards monodisperse clusters on surfaces

  • J. Bosbach
  • D. Martin
  • F. Stietz
  • T. Wenzel
  • F. Träger
Conference paper


A novel experimental technique is presented for post growth narrowing of the size distribution of metal nanoparticles on dielectric substrates. In order to demonstrate the potential of the method, oblate Ag clusters with mean radii of 〈R〉 = 6 nm and broad size distributions were prepared under ultrahigh vacuum conditions on quartz substrates. Narrowing of the width of their size distribution was accomplished by irradiation with short laser pulses. The laser light excites plasmons in the particles, the frequency of which depends on the size and shape of the clusters. By choosing the light frequency such that only the smallest and the largest particles selectively absorb light, evaporate atoms and shrink in size, the size distribution was narrowed by 40%. A scenario for producing monodisperse particles is discussed.


61.46.+w Clusters, nanoparticles, and nanocrystalline materials 68.55.-a Thin film structure and morphology 78.20.e Optical properties of bulk materials and thin films 78.40.Kc Metals, semimetals, and alloys 81.40.Tv Optical and dielectric properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.H. Andersen (Ed.): Proceedings of ISSPIC 8, Small Clusters and Inorganic Particles, Copenhagen 1996; Z. Phys. D 40, 1 (1997)Google Scholar
  2. 2.
    P. Jena, S.N. Khanna, B.K. Rao (Eds.): Proceedings of the Science and Technology of Atomically Engineered 11daterials 20. (World Scientific Publishing, Singapore, New Jersey, London, Hongkong 199: 5 ).Google Scholar
  3. 3.
    H. Haberland (Ed.): Clusters of Atoms and Molecules I and Springer Ser. Chem. Phys. 65 (Springer, Berlin, Heidel- 22. berg 1994 )Google Scholar
  4. 4.
    H. Brune: Surf. Sci, Rep. 31, 121 (1998)Google Scholar
  5. 5.
    M. Abshagen, J. Kowalski, M. Meyberg, G. zu Putlitz, F. Träger, J. Well: Europhys. Lett. 5, 13 (1988).ADSCrossRefGoogle Scholar
  6. 6.
    J. KowaLski, T. Stehlin, M. Vollmer, F. Träger: in Physics of Clusters and Nanophase Materials, ed. by M.S. Multani, 24. V.K. Wadhawan, Phase Transitions 24–26, 737 (1990)Google Scholar
  7. 7.
    J.-A. Venables: Surf. Sci. 299 /300, 798 (1994)ADSCrossRefGoogle Scholar
  8. 8.
    U. Kreibig, M. Vollmer: Optical Properties of Metal Clus- 25. ters, Springer Ser. Mater. Sci. 25 ( Springer, Berlin, Heidel-. berg 1995 )Google Scholar
  9. 9.
    W. Hoheisel, M. Vollmer, F. Träger: Phys. Rev, B 48, 17463 (1993)Google Scholar
  10. 10.
    J. Viereck, F. Stietz, M. Stoke, T. Wenzel, F. Träger: Surf. Sci. 383, L749 (1997)CrossRefGoogle Scholar
  11. 11.
    F. Stietz, M. Stoke, J. Viereck, T. Wenzel, F. Träger: Appl. Surf. Sci, 127–129, 64 (1998)Google Scholar
  12. 12.
    M. Vollmer, R. Weidenauer, W. Hoheisel, U. Schulte, F. Träger: Phys. Rev. B 40, 12 509 (1989)Google Scholar
  13. 13.
    For the laser fluences considered in the present paper measurements of the kinetic energy distributions of the de-sorbing silver atoms have shown that desorption occurs as a thermal process. Therefore, exclusively thermal evaporation has been considered in the calculations.Google Scholar
  14. 14.
    T. Götz, W. Hoheisel, M. Vollmer, F. Träger: Z. Phys. D 33, 133 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    B. Lamprecht, A. Leitner, F.R. Aussenegg: Appl. Phys. B 64, 269 (1997)Google Scholar
  16. 16.
    J.-H. Klein-A,Viele, P. Simon, H.-G. Rubalin: Puys. Rev, Lett. 80, 45 (1998)Google Scholar
  17. 17.
    A. Assion, B. Lang, M. Simon, S. Voll, F. Träger, G. Gerber: in Laser Techniques for State-Selected and State-toState Chemistry IV, Proc. SPIE 3272, 15 (1998)Google Scholar
  18. 18.
    M. Simon, F. Träger, A. Assion, B. Lang, S. Voll, G. Gerber: Chem. Phys. Lett. 296, 579 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    The width and peak position of the (1,0) mode are only little sensitive to changes of the size of the particles since the amplitude is surpressed by the onset of the Ag-interband transition at E 3.7 eV. Therfore, we have only used the (1,1) mode to characterize laser-induced changes of the particle size distributions.Google Scholar
  20. 20.
    C.F. Bohren, D.R. Huffman: Absorption and Scattering of Light by Small Particles ( Wiley, New York 1983 )Google Scholar
  21. 21.
    J. Bosbach, F. Stietz, T. Wenzel, F. Träger: Surf. Sci. 432, 257 (1999)CrossRefGoogle Scholar
  22. 22.
    Prokhorov, V.I. Konov, I. Ursu, I N Mihailescu Laser Heating of Metals, The Adam Bulger Series in Optics and Optoelectronics (Adam Eiger, Bristol, Philadelphia, New York 1990 )Google Scholar
  23. 23.
    H. Lüth: Surfaces and Interfaces of Solid Materials (Springer, Berlin, Heidelberg 1995 )Google Scholar
  24. 24.
    M. Vollmer. Träger: in Physics and Chemistry of Small Clusters, NATO AST Series B 158, 499; ed. by P. Jena, B.K. Rao, S.N. Khanna ( Plenum, New York, London 1987 )Google Scholar
  25. 25.
    M. Vollmer, F. Träger: Surf, Sci. 187, 445 (1987)ADSCrossRefGoogle Scholar
  26. 26.
    J. Bosbach, D. Martin, F. Stietz, T. Wenzel, F. Träger: to be publishedGoogle Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • J. Bosbach
    • 1
  • D. Martin
    • 1
  • F. Stietz
    • 1
  • T. Wenzel
    • 1
  • F. Träger
    • 1
  1. 1.Fachbereich PhysikUniversität KasselKasselGermany

Personalised recommendations