Monodispersive Cr cluster formation by plasma-gas-condensation method

  • S. Yamamuro
  • K. Sumiyama
  • M. Sakurai
  • K. Suzuki
Conference paper


Nanometer—sized Cr clusters in the size rage of 8.5–13 um have been produced by a plasma gas condensation-type cluster deposition apparatus, which combines a glow-discharge sputtering technique with an inert gas condensation technique. We have studied the effects of sputter power, Ar gas pressure, P A r,and Ar gas flow rate, V Ar, on the size distribution of Cr clusters by transmission electron microscopy. The cluster size is insensitive to the sputter power, while the nucleation process is promoted when the sputter power is increased. Monodispersive Cr clusters are formed at both low P Ar and low V Ar where the nucleation and growth processes are definitely separated, and the coagulation of growing particles is prohibited. In the present experiments, these conditions are effectively attained by the use of a carrier gas flow and liquid nitrogen cooling of the cluster growth region.


36.40.-c Atomic and molecular clusters 61.46.+w Clusters, nanoparticles, and nanocrystalline materials 81.10.Bk Growth from vapor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Melinon, V. Paillard, V. Dupuis, A. Perez, P. Jensen, A. Hoareau, J.P. Perez, J. Tuaillon, M. Broyer, J.L. Vialle, M. Pellarin, B. Baguenard, J. Lerrne: int. J. Mod. Phys. B 9, 339 (1995)ADSGoogle Scholar
  2. 2.
    S. Yamamuro, M. Sakurai, K. Sumiyama, K. Suzuki: AIP Conf. Proc. 416, 491 (1998)ADSGoogle Scholar
  3. 3.
    S. Yamanauro, M. Sakurai, K. Sumiyarna, K. Suzuki: Supra-mol. Sci. 5, 239 (1998)CrossRefGoogle Scholar
  4. 4.
    S. Yamamuro, K. Sumiyama, K. Suzuki: J.Appl. Phys. 85, 483 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    H. Haberland, M. Karrais, M. Mall, Y. Thurner: J. Vac. Sci. Technol. A 10, 3266 (1992)Google Scholar
  6. 6.
    S. Yatsuya, S. Kasukabe, R. Uyeda: Jpn. J. Appl. Phys. 12, 1675 (1973)ADSCrossRefGoogle Scholar
  7. 7.
    C.G. Gramivist, R.A. Buhrrnan: J. Appl. Phys, 47, 2200 (1976)ADSCrossRefGoogle Scholar
  8. 8.
    S. Iwama, K. Hayakawa: Nanostruct. Mater. 1, 113 (1992)CrossRefGoogle Scholar
  9. 9.
    V.K. LaMer, R.H. Dineer: J. Am. Chem. Soc. 72, 4847 (1950)CrossRefGoogle Scholar
  10. 10.
    T. Sugimoto: Adv. Colloid Interface Sci. 28, 65 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • S. Yamamuro
    • 1
    • 2
  • K. Sumiyama
    • 1
  • M. Sakurai
    • 1
  • K. Suzuki
    • 1
  1. 1.Institute for Materials ResearchTohoku UniversitySendaiJapan
  2. 2.Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology (JST) CorporationKawaguchiSaitamaJapan

Personalised recommendations