Simulation of the submonolayer homoepitaxial clusters growth on Ag(110)

  • C. Mottet
  • R. Ferrando
  • F. Houtinfinde
  • A. C. Levi
Conference paper


The submonolayer growth of Ag/Ag(110) is studied by kinetic Monte Carlo simulations including deposition, diffusion, and fully reversible aggregation with both anisotropic diffusion barriers and anisotropic bond energies. The harriers for the elementary diffusion processes, including the Schwoebel harrier at step borders, are calculated by many-body tight-binding potentials. Depending on growth conditions (temperature T, adatom flux F, and coverage θ the model shows morphology transitions to one-dimensional (1D) in-channel strips and then to 2D or 3D compact islands. At low T, the island density n I versus θ shows the nucleation, growth (at saturation density), and the coalescence regimes, whereas at higher T,at which point detachment from islands becomes effective, n I presents a maximum at very low θ, followed by a decrease, at first caused by island dissolution and then, for higher θ, by cOalescence.


81.15.Aa Theory and models of film growth 81.15.Hi Molecular, atomic, ion, and chemical beam epitaxy 82.30.Nr Association, addition, insertion, cluster formation, hydrogen bonding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y.W. Mo, J. Kleiner, M.B. Webb, M. Lagally: Phys. Rev. Lett. 66, 1998 (1991)Google Scholar
  2. 2.
    J.A. Stroscio, D.T. Pierce: Phys. Rev. B 49, 8522 (1994)ADSCrossRefGoogle Scholar
  3. H. Röder, E. Hahn, H. Brune, J.P. Bucher, K. Kern: Nature 366, 141 (1993); E. Hahn, E. Kampshoff, A. Fricke, Bucher, K. Kern: Surf. Sci. 319. 277 (1994)Google Scholar
  4. 4.
    J. Villain, A. Pimpinelli, L. Tang, D. Wolf: J. Phys. (Paris) I 2, 2107 (1992)Google Scholar
  5. 5.
    A.-L. Barabgsi, FIE, Stanley: Fractal Concepts in Surface Growth (Cambridge University Press 1995 )Google Scholar
  6. 6.
    G. J.G. Amar, F. Family, P.M. Lam: Phys. Rev. B 50, 8781 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Li, M.C. Bartelt, J.W. Evans, N, Wa,elchli, E. Kampshoff, K. Kern: Phys. Rev. B 56, 12 539 (1997)ADSGoogle Scholar
  8. 8.
    C. Ratsch, A. Zangwill, P. Smilauer, D.D. Vvedensky: Phys. Rev. Lett. 72, 3194 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    V. Rosato, M. Guillopé, B. Legrand: Philos. Mag. A 59, 321 (1989)ADSCrossRefGoogle Scholar
  10. 10.
    F. Hontinfinde, R. Ferrando, A.C. Levi: Surf. Sci. 366, 306 (1996)ADSCrossRefGoogle Scholar
  11. 2.
    R. Ferrando, F. Hontinfinde, A.C. Levi: Phys. Rev. B 56, 4406 (1997)CrossRefGoogle Scholar
  12. 12.
    C. Mottet, R. Ferrand°, F. Hontinfinde, A.C. Levi: Surf. Sci, 417, 220 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    R. Ferrando: Phys. Rev. Lett. 76, 4195 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    A.B. Bortz, M.FI, Kalos, J.L. Lebowitz: J. Corrip. Plays, 1.7, 10 (1975); P.A. M.ksym: Semicond. Sci. Technol. 3, 594 (1988); M. Nutria: Comp. Phys. Commun. 96, 82 (1996)Google Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • C. Mottet
    • 1
  • R. Ferrando
    • 1
  • F. Houtinfinde
    • 1
  • A. C. Levi
    • 1
  1. 1.Dipartimento di Fisica dell’Università di GenovaINFM and CFSBT/CNRGenovaItaly

Personalised recommendations