Advertisement

Production and stability of silicon-doped heterofullerenes

  • M. Pellarin
  • C. Ray
  • J. Lermé
  • J. L. Vialle
  • M. Broyer
  • X. Blase
  • P. Kéghélian
  • P. Mélinou
  • A. Perez
Conference paper

Abstract

Silicon-carbon binary clusters with various mean compositions are generated in a laser vaporization source from targets processed as mixtures of graphite and silicon powders. Their size distribution is first analyzed by time-of-flight mass spectroscopy, which shows the stability of carbon fullerenes doped with silicon atoms in substitutional sites. Further investigations on the level of silicon doping are carried out by means of the laser-induced fragmentation of selected sizes. The photoproduct size distributions give evidence for at least nine silicon atoms substituted into still stable fuilerene networks. The synthesis of heterofullerenes is mainly assisted by the nucleation mechanisms from Si—C mixed atomic vapors. Just as in the case of externally doped fullerene precursors, the laser-induced annealing of stoichiometric silicon-carbide clusters appears as an alternative route to produce heterofullerenes in the gas phase.

PACS

36.40.−Qv Stability and fragmentation of clusters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.W. Kroto et al Nature 318, 162 (1985)Google Scholar
  2. 2.
    W. Krätshmer et al.: Nature 347, 354 (1990)Google Scholar
  3. 3.
    J.R. Heath et al J. Am. Chem. Soc. 107, 7779 (1985)Google Scholar
  4. 4.
    Y. Chai et al J. Chem, Phys. 95, 7564 (1991)Google Scholar
  5. 5.
    L.M. Roth et al J. Am. Chem. Soc. 113, 6298 (1991)Google Scholar
  6. 6.
    Y. Huang, B.S. Freiser: J. Am. Chem. Soc. 113, 9418 (1991)CrossRefGoogle Scholar
  7. 7.
    D.E. Clemmer et al Nature 372, 248 (1994)Google Scholar
  8. 8.
    W. Branz et al.: J. Chem. Phys, 109, 3425 (1998)Google Scholar
  9. 9.
    U. Zimmermann et al Phys. Rev. Lett. 72, 3542 (1994)Google Scholar
  10. 10.
    T. Guo, C. Jin, R.E. Smalley: J. Chem. Phys. 95, 4948 (1991)Google Scholar
  11. 11.
    H.-J. Muhl:, R. Nesper, B. Schnyder, R. Kbtz: Chem. Phys, Lett. 249, 399 (1996)ADSGoogle Scholar
  12. 12.
    T. Pradeep, V. Vijayakrishnan, A.K. Santra, C.N.R. Rao: J. Phys. Chem. 95, 10 564 (1991)CrossRefGoogle Scholar
  13. 13.
    Christian, Z. Wan, S. Anderson: J. Phys. Chem. 96, 10 597 (1992)Google Scholar
  14. 14.
    R. Yu et al J. Phys. Chem. 99, 1818 (1995)Google Scholar
  15. 15.
    J.C. Hummelen et al.: Science 269, 1554 (1995)Google Scholar
  16. 16.
    F. Chen, D. Singh, S.A. ‚Jansen: J. Phys. Chem. 97, 10 958 (1993)Google Scholar
  17. 17.
    N. Kurita, K. Kobayashi, H. Kumahora, K. Tago: Phys. Rev. B 48, 4850 (1993)ADSCrossRefGoogle Scholar
  18. 18.
    K. Esfarjani, K. Ohno, Y. Kawazoe: Plays. Rev. B 50, 17 830 (1994)Google Scholar
  19. 19.
    S.-H. Wang et al J. Phys. Chem. 99, 6801 (1995)Google Scholar
  20. 20.
    w.Andreoni et al J. Am. Chem. Soc. 118, 11 335 (1996)Google Scholar
  21. 21.
    T. Pichler et al.: Phys. Rev. Lett. 78, 4249 (1996)Google Scholar
  22. 22.
    S. Haffner et al Eur. Phys.J. B 1, 11 (1998)Google Scholar
  23. 23.
    N. Kurita et al Chem, Phys. Lett. 198, 95 (1992)Google Scholar
  24. 24.
    w. Andreoni, F. Gygi, M. Parinello: Chem, Phys. Lett. 190, 159 (1992)ADSCrossRefGoogle Scholar
  25. 25.
    T. Kimura, T. Sugai, H. Shin hara: Chem. Phys. Lett. 256, 269 (1996)ADSCrossRefGoogle Scholar
  26. 26.
    J.L. Fye, M.F. Jarrold: J. Phys. Chem. 101, 1836 (1997)CrossRefGoogle Scholar
  27. 27.
    M. Pellarin et al Chem. Phys, Lett. 277, 96 (1197)Google Scholar
  28. 28.
    C. Ray et al Phys.Rev. Lett. 80, 5365 (1998)Google Scholar
  29. 29.
    J.L. Vialle et al.: Rev. Sci. Instrum. 68, 2312 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    E.A. Rohlfing, D.M. Cox, A. Kaldor: J. Chem, Phys. 81, 3322 (1984)ADSCrossRefGoogle Scholar
  31. 31.
    F. Tast et al Phys. Rev. Lett. 77, 3529 (1996)Google Scholar
  32. 32.
    P.P. Radi et al.: J. Chem. Phys. 88, 2809 (1987)Google Scholar
  33. 33.
    S.C. O’Brien et at.: J. Chem. Phys. 88, 220 (1988)ADSCrossRefGoogle Scholar
  34. 34.
    P. Sheier et al Phys, Rev. Lett. 77, 2654 (1996)Google Scholar
  35. 35.
    P.W. Fowler, D.E. Manolopoulos: An. Atlas of Fullerenes ( Clarendon, Oxford 1995 )Google Scholar
  36. 36.
    D. Babic, N. Trinajstic: Chem. Phys. Lett. 237, 239 (1995)ADSCrossRefGoogle Scholar
  37. 37.
    G. Seifert et al Chem. Phys. Lett. 268, 352 (1997)Google Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • M. Pellarin
    • 1
  • C. Ray
    • 1
  • J. Lermé
    • 1
  • J. L. Vialle
    • 1
  • M. Broyer
    • 1
  • X. Blase
    • 2
  • P. Kéghélian
    • 2
  • P. Mélinou
    • 2
  • A. Perez
    • 2
  1. 1.Laboratoire de Spectrométrie Ionique et Moléculaire (U.M.R. 5579) 43Villeurbanne CedexFrance
  2. 2.Département de Physique des Matériaux (U.M.R. 5586) 43Villeurbanne CedexFrance

Personalised recommendations