Advertisement

AuSb2 alloy formation on HOPG by successive deposition of Sb clusters and Au atoms

  • D. Besson
  • M. Treilleux
  • A. Hoareau
  • L. Bardotti
  • B. Prével
  • A. Perez
  • C. Esnouf
Conference paper

Abstract

The behaviour of gold atoms that alloy into amorphous antimony (aSb) islands is studied by transmission electron microscopy (TEM), selected-area electron diffraction (SAED), and energy dispersive X-ray spectroscopy (EDS). In a first step, antimony thin films are produced by low-energy cluster beam deposition (LECBD). The antimony clusters (of diameter 5 nm, with 2300 atoms) are generated in a thermal source by the gas aggregation technique and deposited onto highly-oriented pyrolitic graphite (HOPG). For cluster submonolayer coverage (< 0.2 M.L.), the diffusion and interaction of clusters on substrate lead to the formation of amorphous ramified Sb islands, formed by the aggregation of spherical particles about 10 nm in diameter. In a second step, gold is vapour-deposited onto the aSb-HOPG substrate. The influence of gold atom deposition on the morphology of the islands is studied. Moreover, varying the gold thickness, we characterize the AuSb2 alloy formation.

PACS

61.46.+w Clusters Nanoparticles and nanocrystalline materials - 61.16.Bg Transmission reflection and scanning electron microscopy (including EBIC) - 61.82.Bg Metals and alloys 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See, for example, F. Capasso (Ed.): Physics of Quantum Devices ( Springer, Berlin 1990 )Google Scholar
  2. 2.
    P. Jensen: La Recherche 283, 42 (1996)Google Scholar
  3. 3.
    M. Hashimoto: J. Cryst, Growth 79, 140 (1986)ADSCrossRefGoogle Scholar
  4. 4.
    H. Yasuda, H. Mori, T. Nlurali, T. Saltata: Z. Phys. D 31, 209 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    H. Yasuda, H. Mori: Mater. Sci. Eng. A 217 /218, 244 (1996)Google Scholar
  6. 6.
    H. Yasuda, H. Mori: Thin Solid Films 298, 143 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    L. Bardotti, P. Jensen, A. Hoareau, M. Treilleux, B. Cabaud: Phys. Rev, Lett, 74, 4694 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    L. Bardotti, P. Jensen, A. Hoareau, M. Treilleux, B. Ca-baud, A. Perez, F. Cadete Santos Aires: Surf, Sci. 367, 276 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    P. Jensen, A.-L, Babarasi, H. Larralde, S. Haviin, H. E. Stan-icy: Phys. Rev. B 50, 15 316 (1994)Google Scholar
  10. 10.
    S. Stoyanov, D. Kaschiev: Current Topics in Materials Science, ed. by E. Raidis, vol. 7 ( North-Holland, Amsterdam 1981 )Google Scholar
  11. 11.
    J. Villain, A. Pimpinelli, L.-H. Tang, D.E. Wolf: J. Phys. I (France) 2, 2107 (1992)CrossRefGoogle Scholar
  12. 12.
    K. Sattler, J. Muhlbach, R.E. Recknagel: Phys. Rev. Lett. 45, 821 (1980)ADSCrossRefGoogle Scholar
  13. 13.
    D. Besson, L. Bardotti, A. Hoareau, B. Prével, M. Treilleux, A. Perez, C. Esnouf: Mater. Sci. Eng. B 60, 51 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • D. Besson
    • 1
  • M. Treilleux
    • 1
  • A. Hoareau
    • 1
  • L. Bardotti
    • 1
  • B. Prével
    • 1
  • A. Perez
    • 1
  • C. Esnouf
    • 2
  1. 1.Département de Physique des MatériauxUniversité Claude Bernard Lyon 1Villeurbanne CedexFrance
  2. 2.Laboratoire GEMPPM, Bât 502, 20 av. Albert EinsteinINSAVilleurbanne CedexFrance

Personalised recommendations