Advertisement

Apparent Absence of Dosage Compensation for Z-linked Genes of Avian Species

  • Susumu Ohno
Part of the Monographs on Endocrinology book series (ENDOCRINOLOGY, volume 1)

Abstract

Although the two are rather similar in absolute size, the avian Z-chromosome makes up nearly 10% of the genome, while the original X of placental mammals comprises only 5%. It would appear that birds have an even greater need than mammals for developing an effective dosage compensation mechanism for their Z-linked genes. It is a great surprise to find that avian species apparently failed in developing an effective means for achieving the dosage compensation.

Keywords

Avian Species Dosage Compensation Domestic Chicken Heterozygous Male Dosage Compensation Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cock, A. G.: Dosage compensation and sex-chromatin in non-mammals. Genet. Res. (Camb.) 5, 354–365 (1964).CrossRefGoogle Scholar
  2. Frederic, J.: Contribution â l’étude du caryotype chez le poulet. Arch. Biol. 72, 185–209 (1961).Google Scholar
  3. Galton, M., and P. Bredbury: Asynchronous replication of the sex chromosomes of the pigeon (Columba livia domestica). Cytogenetics 5, 295–306 (1966).PubMedCrossRefGoogle Scholar
  4. Hollander, W. F.: Mosaic effects in domestic birds. Quart. Rev. Biol. 19, 285–307 (1944).CrossRefGoogle Scholar
  5. Hurt, F. B.: Genetics of the fowl. New York: McGraw-Hill 1949.Google Scholar
  6. Hurt, F. B., and C. D. Mueller: Sex-linked albinism in the turkey, Meleagris gallopavo. J. Hered. 33, 69–77 (1942).Google Scholar
  7. Kosin, I. L., and H. Ishizaki: Incidence of sex chromatin in Gallus domesticus. Science 130, 43 (1959).PubMedCrossRefGoogle Scholar
  8. Krishan, A., G. J. Halden, and R. N. Shoffner: Mitotic chromosomes and the W-sex chromosome of the great horned owl (Bubo v. virginianus). Chromosoma (Berl.) 17, 258–263 (1966).Google Scholar
  9. Lauber, J. K.: Sex-linked albinism in the Japanese quail. Science 146, 948–950 (1964).PubMedCrossRefGoogle Scholar
  10. Levi, W. M.: The pigeon. Columbia, S. C.: The R. L. Bryan Comp. 1951.Google Scholar
  11. Ohno, S., W. D. Kaplan, and R. Kinosita: On the sex chromatin of Gallus domesticus. Exp. Cell Res. 19, 180–183 (1960).PubMedCrossRefGoogle Scholar
  12. Ohno, S., C. Stenius, L. C. Christian, W. Beçak, and M. L. Beçak: Chromosomal uniformity in the avian subclass Carinatae. Chromosoma (Berl.) 15, 280–288 (1964).CrossRefGoogle Scholar
  13. Rothfels, K., M. Aspden, and M. Mollison: The W-chromosome of the budgerigar, Melopsittacus undulatus. Chromosoma (Berl.) 14, 459–467 (1963).CrossRefGoogle Scholar
  14. Schmid, W.: DNA replication patterns of the heterochromosomes in Gallus domesticus. Cytogenetics 1, 344–352 (1962).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1966

Authors and Affiliations

  • Susumu Ohno
    • 1
  1. 1.Department of BiologyCity of Hope MedicalDuarteUSA

Personalised recommendations