Advertisement

Model of the Stress-Strain Behaviour of Rock Masses

  • Walter Wittke

Abstract

The stress-strain behaviour of rock masses is of considerable importance with regard to stability investigations and thus also with regard to the designing and construction of structures in rock. It is found that, even in the case of underground openings with a relatively limited overburden, the rock mass usually represents the actual load-carrying structure, aided by the opening’s support and lining. Similarly, where concentrated loads are introduced into the bedrock as in the case of concrete arch dams, the rock mass forms a critical part of the overall structure. Deformations in the bedrock lead to loading of the arch dam and vice versa, so that an interaction between both components of the structure arises. The rock mass, perhaps in combination with a retaining structure, also has the task of dissipating loads due to dead weight and other influences when slopes are constructed

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 3.1
    Barden, L.: Stresses and displacements in a cross-anisotropic soil. Géotechnique 13 (1963) 198–210CrossRefGoogle Scholar
  2. 3.2
    Barton, N.: A relationship between joint roughness and joinshear strength. In: Proc. ISRM Symp. on Rock Fracture, Nancy 1971.Google Scholar
  3. 3.3
    Barton, N.: A review of the shear strength of filled discontinuities in rock. Publ. of the Norw. Geotechn. Inst., 105 (1974).Google Scholar
  4. 3.4.
    Barton, N.: Review of a new shear strength criterion for rock joints. Publ. of the Norw. Geotechn. Inst., 105 (1974).Google Scholar
  5. 3.5
    Barton, N.; Bandis, S.; Bakhtar, K.: Strength, deformation and conductivity coupling of rock joints. Int. J. Rock ivlech. Min. Sci. Geomech. Abstr. 22, No. 3, 121–140.Google Scholar
  6. 3.6.
    Bieniawski, Z.T.: Estimating the strength of rock materials, J. S. Afr. Inst. of Min. Metall., 74 (1974) 312–320.Google Scholar
  7. 3.7.
    Brace, W.F.: Brittle fracture of rocks. Inc State of Stress in Earth’s Crust (ed. by W.R. Judd ). New York: Elsevier 1964.Google Scholar
  8. 3.8
    Cavers, D.S.: Simple methods to analyze buckling of rock slopes. Rock Mech. 14 (1981) 87–104.CrossRefGoogle Scholar
  9. 3.9
    Desai, C.S., Abel, J.F.: Introduction to the finite element method. New York: van Nostrand 1972.Google Scholar
  10. 3.10
    Erichsen, C.: Gekoppelte Spannungs-Sickerströmungsberechnungen von Bauwerken in klüftigem Fels unter Berücksichtigung des nichtlinearen Spannungsverschiebungsverhaltens von Trennflächen. Publications of the Institute for Foundation Engineering, Soil Mechanics, Rock Mechanics and Waterways Construction at the RWTH Aachen, Vol. 15 (1987).Google Scholar
  11. 3.11.
    Fairhurst, C.; Cook, N.G.W.: The phenomenon of rock splitting parallel to the direction of maximum compression in the neighbourhood of a surface. Im Proc. 1st Congr. ISRM, Vol. 1, Lisbon 1966.Google Scholar
  12. 3.12.
    Feiser, J.: Numerische Untersuchungen zum Einfluß der Trennflächen auf das Spannungs-verformungsverhalten on Fels. Unpublished Diploma thesis, RWTH Aachen 1982.Google Scholar
  13. 3.13.
    Feiser, J.: Mechanisches Verhalten eines Sedimentgesteins mit tongefüllten Schichtfugen und offenen Klüften. Publications of the Institute for Foundation Engineering, Soil Mechanics, Rock Mechanics and Waterways Construction at the RWTH Aachen, Vol. 16 (1988).Google Scholar
  14. 3.14.
    Franklin, J.A.; Hoek, E.: Developments in triaxial testing technique. Rock Mech. 2 (1970) 223–280.CrossRefGoogle Scholar
  15. 3.15.
    Gerrard, C.M.; Background to mathematical modelling in geomechanics: The roles of fabric and stress history. In: Finite Elements in Geomechanics (ed. by G. Gudehus ). London, New York, Sydney, Toronto: Wiley and Sons 1977.Google Scholar
  16. 3.16.
    Hahn, H.G.: Bruchmechanik. Stuttgart: Teubner 1976.zbMATHGoogle Scholar
  17. 3.17.
    Hill, R.: The mathematical theory of plasticity. Oxford: University Press 1960.Google Scholar
  18. 3.18.
    Hoek, E.; Brown, E.T.; Underground excavations in rock. London: The Inst. of Min. and Metall. 1980.Google Scholar
  19. 3.19.
    Hojem, J.M.P.; Cook, N.G.W.: The design and construction of a triaxial and polyaxial cell for testing rock specimens. South Afr. Mech. Eng. 18 (1968) 57–61.Google Scholar
  20. 3.20.
    John, K.W.: Festigkeit und Verformbarkeit von druckfesten, regelmäßig gefügten Dis- kontinuen. Publications of the Institut für Bodenmechanik und Feismechanik at the TH Karlsruhe, Vol. 37 (1969).Google Scholar
  21. 3.21.
    Kiehl, J.R.: Bestimmung elastischer Kennwerte von anisotropem geschiefertem Gebirge aus den Ergebnissen von Bohrlochaufweitungsversuchen. In: Proc. 4th Nat. Rock Mech. Symp., Aachen 1980.Google Scholar
  22. 3.22.
    Kiehl, J.R.; Wittke, W.: Ermittlung der Verformbarkeit von anisotropem Fels aus den Ergebnissen von Feldversuchen. In: Proc. 5th Congr. ISRM, Melbourne 1983.Google Scholar
  23. 3.23.
    Ladanyi, B.; Archambault, G.: Simulation of shear behaviour of a jointed rock mas In: Proc. 11th Symp. on Rock Mech., AIME, New York 1970.Google Scholar
  24. 3.24.
    Langer, M.: Grundzüge einer theoretischen Salzmechanik. In: Proc. 3rd Nat. Rock Mech. Symp., Aachen 1978.Google Scholar
  25. 3.25.
    Leichnitz, W.: Mechanische Eigenschaften von Felstrennflächen im direkten Scherver- such. Publications of the Institut für Bodenmechanik und Felsmechanik at the TH Karlsruhe, Vol. 89 (1981).Google Scholar
  26. 3.26.
    Lekhnitskii, S.G.: Theory of elasticity of an anisotropic elastic body. San Francisco: Holden-Day 1963.zbMATHGoogle Scholar
  27. 3.27.
    Lombardi, G.: Berücksichtigung der räumlichen Einflüsse im Bereich der Ortsbrust. In: Proc. 1st Nat. Rock Mech. Symp., Essen 1974.Google Scholar
  28. 3.28.
    Masure, P.: Behaviour of rocks with two-dimensional discontinuous anisotropy. In: Proc. 2nd Congr. ISRM, Vol. 1, Belgrade 1970.Google Scholar
  29. 3.29.
    Pande, G.N., Sharma, K.G.: A multi-laminate model of clays - a numerical study of the influence of rotation of the principal stress axes. In: Proc. of the Symp. on Implementation of Computer Procedures and Stress-strain laws in Geotech. Eng., Vol. 2, Chicago 1981.Google Scholar
  30. 3.30
    Patton, F.D.: Multiple modes of shear failure in rock. In: Proc. 1st Congr. ISRM, Vol. 1, Lisbon 1966.Google Scholar
  31. 3.31
    Perzyna, P.: Fundamental problems in viscoplasticity. Adv. Appl. Mech. 9 (1966) 243–377.CrossRefGoogle Scholar
  32. 3.32
    Pinto, J.L.: Stresses and strains in an anisotropic-orthotropic body. Im Proc. ist Congr. ISRM, Vol. 1, Lisbon 1966.Google Scholar
  33. 3.33
    Sadowsky, M.A.; Sternberg, E.: Stress concentration around a triaxial ellipsoidal cavity. J. Appl. Mech. 16 (1949) 149–157.zbMATHMathSciNetGoogle Scholar
  34. 3.34
    Salamon, M.D.G.: Elastic moduli of a stratified rock mass, int. J. Rock Mech. M€n. Sci. 5 (1968) 512–527.Google Scholar
  35. 3.35
    Schneider, H.J.: Reibungs-und Verformungsverhalten von Trennflächen in Fels. Publications of the Institut für Bodenmechanik und Felsmechanik at the TH Karlsruhe, Vol., 65 (1975).Google Scholar
  36. 3.36.
    Schofield, A.N.; Wroth, C.P.: Critical state soil mechanics. London: McGraw-Hill 1968.Google Scholar
  37. 3.37
    Stille, H.; Franzen, T.; Holmberg, R.: Some aspects of the tunneling practice in Sweden. In: Proc. Int. Congr. on Tunnelling “Tunnel 81”, Vol. 2, Düsseldorf 1981.Google Scholar
  38. 3.38
    Zienkiewicz, O.C.: The finite element method. London: McGraw-Bill 1977.zbMATHGoogle Scholar
  39. 3.39
    Zienkiewicz, O.C.; Pande, G.N.: Time-dependent multilaminate model of rocks–a numerical study of deformation and failure of rock masses. Int. J. Numerical and Analytical Methods in Geornech. 1 (1977) 219–247.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Walter Wittke
    • 1
  1. 1.Institut für Grundbau, Bodenmechanik, Felsmechanik und VerkehrswasserbauRWTH AachenAachenGermany

Personalised recommendations