Rock Mechanics pp 799-835 | Cite as

In-situ Stresses

  • Walter Wittke


The state of stress existing in the rock mass prior to any construction work is referred to as the in-situ or primary state of stress. A knowledge of this state is important to the planning and construction of engineering structures in rock. Chapters 11, 12 and 13 in particular demonstrated the considerable influence exercised by the in-situ state of stress on the deformations caused by excavation, on the loading of any support and therefore on stability. Thus, for example, the type and magnitude of the loading experienced by the shotcrete lining of a tunnel or cavern depend largely on whether the rock mass in its undisturbed state is Ioaded primarily in a vertical or horizontal direction (Sections 11.3 and 12.3). The loading of the lining of a tunnel in a swelling rock mass also depends heavily on the in-situ state of stress (see Section 11.7). The number of examples illustrating the influence of the in-situ state of stress on the stability of engineering structures in or on a rock mass may be extended at will.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 21.1.
    Aborner, L.: Present-day stress field and seismotectonic block movements along major fault zones in Central Europe. Tectonophysics 29 (1975) 233–249.CrossRefGoogle Scholar
  2. 21.2.
    Bonnechere, F.J.; Cornet, F.H.: In situ stress measurements with a borehole deformation cell. In: Proc. Int. Symp. Field Measurements in Rock Mech., Vol. 1, Zurich 1977.Google Scholar
  3. 21.
    Bonnechere, F.J.; Fairhurst, C.: Determination of the regional stress field from door-stopper measurements. J. S. Afr. Inst. Min. Metall. 68 (1968) No. 12.Google Scholar
  4. 21.4.
    Brown, E.T.; Hoek, E.: Trends in relationships between measured in situ stresses and depth. Int. J. Rock Mech. Min. Sci. 15 (1978) 211–215.Google Scholar
  5. 21.5.
    Blackwood, R.L.: An instrument to measure the complete stress field in soft rock or coal in a single operation. In Proc. Int. Symp. Field Measurements in Rock klech., Vol 1, Zurich 1977.Google Scholar
  6. 21.6
    Crouch, S.L..; Fairhurst, C.: A four component borehole deformation gauge for the deter-mination of in situ stresses in rock masses. Int. J. Rock Iv1ech Min. Sci. 4 (1967)„Google Scholar
  7. 21.7
    Crouch, S.L.: A note on the stress concentrations at the bottom of a flat-ended borehole. J. S. Aft. Inst. Min. Metall. 70 (1969) No 5.Google Scholar
  8. 21.8.
    De la Cruz, R.V.; Raleigh, C.B.: Absolute stress measurements at the Rangely Anticline, Northwestern Anticline. Int. J. Rock Mech. Min. Sci. 9 (1972) 625–634.CrossRefGoogle Scholar
  9. 21.9.
    Duncan Fama, h1.E.; Pender, M.J.: Analysis of the hollow inclusion technique for measuring in situ rock stress. Int. J. Rock Mech. Min. Sci. 17 (1980) 137–146.Google Scholar
  10. 21.10.
    Haimson, B.C.: Stress measurements in the Weber Sandstone at Rangely, Colorado. Am. Geophys. U. 53 (1972).Google Scholar
  11. 21.11.
    Haimson, B.C.: Earthquake related stresses at Rangely, Colorado. Inc Proc. 14th US Symp. on Rock Mech., New York 1973.Google Scholar
  12. 21.12.
    Hirashima, K.; Koga, A.: Determination of stresses in anisotropie elastic medium un-affected by boreholes from measured strains or deformations. In: Proc. Int. Symp. Field Measurements in Rock Mech., Vol. 2, Zurich 1977.Google Scholar
  13. 21.13.
    Hiramatsu, Y.; Oka, Y.: Determination of the stress in rock unaffected by boreholes or drifts from measured strains or deformations. Int. J. Rock Mech. Min. Sci, 5 (1968) 337–352.CrossRefGoogle Scholar
  14. 21.14.
    Hooker, V.E.; Aggson, J.R.; Bickel, D.L.: Improvements in the three-component bore-hole deformation gauge and overcoring techniques. Bureau of Mines RI 7894 (1974).Google Scholar
  15. 21.15.
    Herget, G.; Pahl, A.: Spannungsmessungen in der Umgebung von Felshohlräumen.. In: Proc. 2nd Nat. Rock Mech. Symp., Aachen 1976.Google Scholar
  16. 21.16.
    lilies, J.H.; Baumann, H.; Hoffers, B.: Stress pattern and strain release in the Alpine foreland. Tectonophysics 71 (1979) 157–172.Google Scholar
  17. 21.17.
    Jagsch, D.: Ermittlung von Gebirgsspannungen in einem GroRbohrloch. Commemorative Publication Leopold Müller-Salzburg, Karlsruhe 1974.Google Scholar
  18. 21.18
    Kovari, K.; Amstad, C.; Grob, H.: Ein Beitrag zum Problem der Spannungsmessung im Fels. In: Proc. ISRM Symp. on Underground Openings, Lucerne 1972.Google Scholar
  19. 21.19.
    Lekhnitskii, S.G.: Theory of elasticity of an anisotropie elastic body. San Francisco: Holden-Day 1963.Google Scholar
  20. 21.20.
    Leeman, E.R.: The CSIR “Doorstopper” and triaxial rock stress measuring instruments. Rock Mech. 3 (1971) 25–50.CrossRefGoogle Scholar
  21. 21.21.
    Leeman, E.R.; Hayes, D.J.: A technique for determining the complete state of stress in rock using a single borehole. In Proc. 1st Congr. ISRM, Vol. 2, Lisbon 1966.Google Scholar
  22. 21.22.
    Merrill, R.H.: Three component borehole deformation gauge for determining the stress in rock. Bureau of Mines RI 7015 (1967).Google Scholar
  23. 21.23.
    Panek, L.A.: Calculations of the average groundstress components from measurements of the diametral deformation of a drill hole. Testing Techniques for Rock Mech., ASTM (1966).Google Scholar
  24. 21.24
    Pahl, A.: In situ stress measurements by overcoring inductive gauges. In: Proc. Int, Symp. Field Measurements in Rock Mech., Vol. 1, Zurich 1977.Google Scholar
  25. 21.25.
    Raleigh, C.B.; Healy, J.H.; Bredehoeft, J.D.: Faulting and crustal stress at Rangely, Colorado. Am. Geophys. U. 16 (1972).Google Scholar
  26. 21.26.
    Ribacchi, R.: Rock stress measurements in anisotropic rock masses. In: Proc. Int Symp. Field Measurements in Rock Mech., Vola 1, Zurich 1977.Google Scholar
  27. 21.27.
    Rocha, M.; Lopes, J.J.B.; Silva, J.N.: A new technique for applying the method of the flat jack in the determination of stresses inside rock masses. Ire Proc. 1st Congr. ISRM, Vol. 2, Lisbon 1966.Google Scholar
  28. 21.28.
    Rocha, M.; Silvério, A.; Pedro, J.O.; Delgado, J.S.: A new development of the LNEC stress tensor gauge. In: Proc. 3rd ISRM Congr., Vol. 1, Denver 1974.Google Scholar
  29. 21.29.
    Rocha, M.; Silvério, A.: A new method for the, complete determination of the state of stress in rock masses. Géotechnique 19 (1969) 116–132.CrossRefGoogle Scholar
  30. 21.30.
    Scheidegger, A.E. (Ed.): Tectonic stresses in the Alpine-Mediterranean region. Rock Mech. Suppl. 9 (1980).Google Scholar
  31. 21.31.
    Van Heerden, E.W.: Stress concentration factors for the flat borehole end for use in rock stress measurements. Eng. Geol. 3 (1969) 307–323.CrossRefGoogle Scholar
  32. 21.32.
    Voight, B.: Beziehungen zwischen großen horizontalen Spannungen im Gebirge und der Tektonik und der Abtragung. In:_Proc. 1st Congr. ISRM, Vol, 2, Lisbon 1966.Google Scholar
  33. 21.33.
    Worotnicki, G.; Walton, R.J.: Triaxial hollow inclusion gauges for the determination of rock stress in situ. In Proc. ISRM Symp. on Investigation of Stress in Rock and Advances in Shear Measurement, Sydney 1976.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Walter Wittke
    • 1
  1. 1.Institut für Grundbau, Bodenmechanik, Felsmechanik und VerkehrswasserbauRWTH AachenAachenGermany

Personalised recommendations