Rock Mechanics pp 417-503 | Cite as

Traffic Tunnels and Adits

  • Walter Wittke


The driving of a tunnel or an adit leads to a stress redistribution in the rock mass. Loading which passes through the rock mass in the area of the tunnel cross-section in front of the working face must, by completion of construction, be diverted around the opening. The example in rig. ilni of a tunnel in a rock mass loaded predominantly in the vertical direction by dead weight demonstrates that, even in the case of a medium overburden, this may no longer be accomplished via a shotcrete support alone if this is to be, designed economically. The majority-of the load is in fact carried by the rock mass to the side of the opening and the support plays only a secondary role [11.5]. Accordingly — as already stressed several times — stability analyses of openings must, above all else, take into consideration the load-carrying action of the rock mass and thus also its stress-strain behaviour. The analysis procedure presented in Chapter 6 has proven to be a valuable aid in this respect and therefore its application to stability analyses in tunnel and adit construction will be discussed in greater detail.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 11.1.
    Bathe, K.J.; Wilson, EX.; Peterson, F.E.; Wunderiich, W.: SAP IV–Beschreihung und Benutzerhandbuch. Publications of the Institut fur Konstruktiven Ingenieurbau, Ruhr- Universitat Bochum, No. 75–14 (1975).Google Scholar
  2. 11.2.
    Egger, P.: Einflufi des Post-Failure-Verhakens von Fels auf den Tunne lausbau. Pub¬lications of the Institut fur Bodenmechanik und Felsmechanik at the TH Karlsruhe, VoL 57 (1973).Google Scholar
  3. 11.3.
    Lombardi, G.: Zur Bern essung der Tunne lauskl e i dung mit Be riicksicht igung des Bauvor-ganges. Sehweiz. Bauz. 89 (1971) 793–801.Google Scholar
  4. 11.4.
    Lombardi, G.: Long term measurements in underground openings and their interpretation with special consideration to the theological behaviour of the rock. Im Proc. Int. Symp. Field Measurements in Rock Meek, VoL 2, Zurich 1977.Google Scholar
  5. 11.5.
    Muller-Salzburg, L.: Der Felsbau, Vol. 3. Stuttgart: F. Enke 1963.Google Scholar
  6. 11.6
    ] Pacher, F.: Deformationsmessungen im Versuchsstollen als Mittel zur Erforschung des Gebirgsverhaltens und zur Bern essung des Ausbaus. Felsmechanik und Ingenieurgeologie, SuppL I (1964) 149–16.LGoogle Scholar
  7. 11.7
    Pierau, B.: Tunne I be m essung unter B e rticksi cht i gung der raum lichen Spannun gs- Verfor mungszustande an der Ortsbrust. Publications of the Institute for Foundation Engineer¬ing, Soil Mechanics, Rock Mechanics and Waterways Construction at the RWTH Aachen, VoL 9 (1981)Google Scholar
  8. 11.8.
    Semprich, S.: Berechnung der Spannungen und Verformungen im Bereich der Ortsbrust von Tunnelbauwerken im Pels. Publications of the Institute for Foundation Engineering, Soil Mechanics, Rock Mechanics and Waterways Construction at the RWTH Aachen, VoL 8 (1980).Google Scholar
  9. 11.9
    Wittke, W.: Statik des Tunnelbaus auf felsmechanischer Grandlage. In: Proc. 7th’Nat. Rock Mech. Symp., Aachen 1986, Geotechnik Special Issue 1987 (ecL by the DGEG), 135–146.Google Scholar
  10. 11.10.
    Wittke, W„; Feiser, J.; Krieger, j.: Stability analysis of an advanced vault excavation with uniiried invert according to the finite element method. In: Int. J. Numer. AnaL Methods Geomech. 10 (1986) 259–281.Google Scholar
  11. 11.11.
    Worch, G.: Elastische Scheiben. Im Betonkalender 1967, Part II, 1–19.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Walter Wittke
    • 1
  1. 1.Institut für Grundbau, Bodenmechanik, Felsmechanik und VerkehrswasserbauRWTH AachenAachenGermany

Personalised recommendations