Advertisement

Physiologie der Hormonwirkungen

  • Peter Schopfer
  • Axel Brennicke
Chapter
Part of the Springer-Lehrbuch book series (SLB)

Zusammenfassung

Hormone sind stoffliche Faktoren, die im vielzelligen Organismus zur Übermittlung von Steuersignalen dienen. Sie sind sowohl für die Koordination von Stoffwechsel- und Entwicklungsprozessen als auch für die Übermittlung von Umweltreizen zuständig. Chemisch gesehen handelt es sich um eine heterogene Gruppe von niedermolekularen Substanzen, die sich in 9 Klassen einteilen läßt: 1.Auxin, 2.Gibberelline, 3.Cytokinine, 4.Abscisinsäure, 5.Ethylen, 6. Brassinosteroide, 7. Salicylsäure,8.Jasmonate, 9.Systemin. Mit Ausnahme des Systemins können diese Substanzen wahrscheinlich in allen höheren Pflanzen gebildet und für eine Vielzahl von Regulationsaufgaben in verschiedenen Stadien der Ontogenie eingesetzt werden. Sie aktivieren, nach Bindung an einen meist noch unbekannten Hormonreceptor in den kompetenten Zellen des Zielgewebes, eine oder mehrere Signaltransduktionsketten, welche zu spezifischen Hormonwirkungen führen,z.B.zum Öffnen von lonenkanälen oder zur Aktivierung der Transkription bestimmter Gene. Für die Aufklärung der Biosynthese, der Receptoren und der von den Receptoren aktivierten Signaltransduktions ketten werden heute oft Mutanten und genetisch transformierte Pflanzen eingesetzt. Die physiologische und molekularbiologische Analyse der hierbei erzeugten Eingriffe in die Bildung und Wirkung von Hormonen hat bereits zu wichtigen neuen Einsichten in ihren Wirkmechanismus geführt

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Weiterführende Literatur

  1. Abel S, Theologis A (1996) Early genes and auxin action. Plant Physiol 111:9–17PubMedCentralPubMedCrossRefGoogle Scholar
  2. Abeles FB, Morgan PW, Saltveit ME (1992) Ethylene in plant biology, 2nd edn. Academic Press, San DiegoGoogle Scholar
  3. Bethke PC, Schuurink R, Jones RL (1997) Hormonal signaling in cereal aleurone. J Exp Bot 48:1337–1356CrossRefGoogle Scholar
  4. Chang C, Stewart RC (1998) The two-component system. Regulation of diverse pathways in prokaryotes and eukaryotes. Plant Physiol 117:723–731PubMedCentralPubMedCrossRefGoogle Scholar
  5. Clouse SD (1996) Molecular genetic studies confirm the role of brassinosteroids in plant growth and development. Plant J 10:1–8PubMedCrossRefGoogle Scholar
  6. Davies AJ, Jones AG (eds) (1991) Abscisic acid: Physiology and biochemistry. Bios Scientific, OxfordGoogle Scholar
  7. Davies PJ (ed) (1995) Plant hormones. Physiology, biochemistry and molecular biology, 2nd edn. Kluwer, DordrechtGoogle Scholar
  8. Fincher GB (1989) Molecular and cellular biology associated with endosperm mobilization in germinating cereal grains. Annu Rev Plant Physiol Plant Mol Biol 40:305–346CrossRefGoogle Scholar
  9. Goliber TE, Feldman LJ (1989) Osmotic stress, endogenous abscisic acid and the control of leaf morphology in Hippuris vulgaris. L. Plant Cell Environ 12:163–171CrossRefGoogle Scholar
  10. Hetherington AM, Quatrano RS (1991) Mechanisms of action of abscisic acid at the cellular level. New Phytol 119:9–32CrossRefGoogle Scholar
  11. Hobbie L, Timpte C, Estelle M (1994) Molecular genetics of auxin and cytokinin. Plant Mol Biol 26:1499–1519PubMedCrossRefGoogle Scholar
  12. Hooley R (1994) Gibberellins: Perception, transduction and responses. Plant Mol Biol 26:1529–1555PubMedCrossRefGoogle Scholar
  13. Huttly AK, Phillips AL (1995) Gibberellin-regulated plant genes. Physiol Plant 95:310–317CrossRefGoogle Scholar
  14. Jones AM, Im K-H, Savka MA, Wu M-J, DeWitt NG, Shillito R, Binns AN (1998) Auxin-dependent cell expansion mediated by overexpressed auxin-binding protein 1. Science 282:1114–1117PubMedCrossRefGoogle Scholar
  15. Kaminek M, Mok DWS, Zazimalova E (eds) (1992) Physiology and biochemistry of cytokinins in plants. SPB, The HagueGoogle Scholar
  16. Karssen CM (1995) Hormonal regulation of seed development, dormancy, and germination studied by genetic control. In: Kigel J, Galili G (eds) Seed development and germination. Dekker, New York, pp 333–350Google Scholar
  17. Kende H (1993) Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44:283–307CrossRefGoogle Scholar
  18. Kende H, van der Knaap E, Cho H-T (1998) Deepwater rice: A model plant to study stem elongation. Plant Physiol 118: 1105–1110PubMedCentralPubMedCrossRefGoogle Scholar
  19. Kieber JJ (1997) The ethylene signal transduction pathway in Arabidopsis. J Exp Bot 48:211–218PubMedCrossRefGoogle Scholar
  20. Klee HJ, Romano CP (1994) The role of phytohormones in development as studied in transgenic plants. Crit Rev Plant Sci 13:311–324Google Scholar
  21. Merlot S, Giraudet J (1997) Genetic analysis of abscisic acid signal transduction. Plant Physiol 114:751–757PubMedCentralPubMedCrossRefGoogle Scholar
  22. Mok DWS, Mok MC (eds) (1994) Cytokinins: Chemistry, activity and function. CRC, Boca RatonGoogle Scholar
  23. Moore TC (1989) Biochemistry and physiology of plant hormones, 2nd edn. Springer, Berlin Heidelberg New York TokyoCrossRefGoogle Scholar
  24. Napier RM, Venis MA (1990) Receptors for plant regulators: Recent advances. J Plant Growth Regul 9:113–126CrossRefGoogle Scholar
  25. Nilsson O, Olsson O (1997) Getting to the root: The role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiol Plant 100:463–473CrossRefGoogle Scholar
  26. Reid JB (1993) Plant hormone mutants. J Plant Growth Regul 12:207–226CrossRefGoogle Scholar
  27. Reid JB, Ross JJ (1993) A mutant-based approach, using Pisum sativum, to understand plant growth. Int J Plant Sci 154: 22–34CrossRefGoogle Scholar
  28. Roberts LW, Gahan PB, Aloni R (eds) (1988) Vascular differentiation and plant growth regulators. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  29. Sakurai A, Yokota T, Clouse S (eds) (1999) Brassinosteroids. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  30. Schaller A, Ryan CA (1996) Systemin — a polypeptide defense signal in plants. BioEssays 18:27–33PubMedCrossRefGoogle Scholar
  31. Schmülling T, Schäfer S, Romanov G (1997) Cytokinins as regulators of gene expression. Physiol Plant 100:505–519CrossRefGoogle Scholar
  32. Sembdner G, Parthier B (1993) The biochemistry and the physiological and molecular actions of jasmonates. Annu Rev Plant Physiol Plant Mol Biol 44:569–589CrossRefGoogle Scholar
  33. Sitbon F, Perrot-Rechenmann C (1997) Expression of auxinregulated genes. Physiol Plant 100:443–455CrossRefGoogle Scholar
  34. Takahashi N (1986) Chemistry of plant hormones. CRC, Boca RatonGoogle Scholar
  35. Takahashi N, Phinney BO, MacMillan J (eds) (1991) Gibberellins. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  36. Van Loon LC, Bruinsma J (1992) The new plant physiology — molecular approaches to studying hormonal regulation of plant development. Acta Bot Neerl 41:1–23Google Scholar
  37. Zeevaart JAD, Creelman RA (1988) Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol 39:439–473CrossRefGoogle Scholar

In Abbildungen und Tabellen zitierte Literatur

  1. Barros RS, Neill SJ (1986) Planta 168:530–535PubMedCrossRefGoogle Scholar
  2. Bonner J, Galston AW (1952) Principles of plant physiology. Freeman, San FranciscoGoogle Scholar
  3. Chang C (1996) Trends Biol Sci 21:129–133Google Scholar
  4. Cleland R (1972) Planta 104:1–9CrossRefGoogle Scholar
  5. Deschamp PA, Cooke TJ (1983) Science 219:505–507PubMedCrossRefGoogle Scholar
  6. Edelmann H, Schopfer P (1989) Planta 179:475–485 (und unpublizierte Daten)PubMedCrossRefGoogle Scholar
  7. Galston AW (1961) The life of the green plant. Prentice-Hall, Englewood CliffsGoogle Scholar
  8. Hertel R (1986) In: Bopp M (ed) Plant growth substances 1985. Springer, Berlin Heidelberg New York Tokyo, pp 214–217CrossRefGoogle Scholar
  9. Higgins TJV, Zwar JA, Jacobsen JV (1976) Nature 260:166–169CrossRefGoogle Scholar
  10. Hohl M, Schopfer P (1992) Planta 187:498–504PubMedGoogle Scholar
  11. Lazarus CM (1991) In: Grierson E (ed) Developmental regulation of plant gene expression. Blackie, Glasgow, pp 42–74CrossRefGoogle Scholar
  12. Matile P (1975) The lytic compartment of plant cells. Springer, Wien New York (Cell biology monographs, vol I)CrossRefGoogle Scholar
  13. Métraux JP, Kende H (1983) Plant Physiol 72:441–446PubMedCentralPubMedCrossRefGoogle Scholar
  14. Morgan PW, He C-J, Drew MC (1992) Plant Physiol 100:1587–1590PubMedCentralPubMedCrossRefGoogle Scholar
  15. Phinney BO, West CA (1960) In: Rudnick D (ed) Developing cell systems and their control. Ronald, New York, pp 71–92Google Scholar
  16. Raskin I, Kende H (1984) Plant Physiol 76:947–950PubMedCentralPubMedCrossRefGoogle Scholar
  17. Ray PM (1963) The living plant. Rinehart & Winston, New YorkGoogle Scholar
  18. Reid JB (1990) J Plant Growth Regul 9:97–111CrossRefGoogle Scholar
  19. Rood SB, Williams PH, Pearce D, Murofushi N, Mander LN, Pharis RP (1990) Plant Physiol 93:1168–1174PubMedCentralPubMedCrossRefGoogle Scholar
  20. Schopfer P (1989) In: Plant water relations and growth under stress. Yamada Science Foundation, Osaka, pp 301–308Google Scholar
  21. Steward FC (1964) Plants at work. A summary of plant physiology. Addison-Wesley, Reading MAGoogle Scholar
  22. Went FW, Thimann KV (1937) Phytohormones. Macmillan, New YorkGoogle Scholar
  23. Young JP, Dengler NG, Horton RF (1987) Ann Bot 60:117–125Google Scholar
  24. Zeevart JAD (1980) Plant Physiol 66:672–678CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Peter Schopfer
    • 1
  • Axel Brennicke
    • 2
  1. 1.Institut für Biologie II, BotanikUniversität FreiburgFreiburgDeutschland
  2. 2.Allgemeine BotanikUniversität UlmUlmDeutschland

Personalised recommendations