Advertisement

Carbon Cycles and Temperate Woodlands

  • J. S. Olson
Part of the Ecological Studies book series (ECOLSTUD, volume 1)

Abstract

The other chapters of this book have shown many ways of linking different parts of the same system to one another. Among the ways of linking the world’s regional and local systems to one another, unifying considerations of the circulation of carbon (and of nitrogen) through a common atmospheric pool have been recognized as important since Dumas and Boussingault (1844; see Riley, 1944). Even now we are not sure how important lands, especially forests, can be in modifying or stabilizing these cycles, but several kinds of information and models suggest that their importance may have been underestimated in the past (Figs. 1 and 2).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bazilevich, N. I., L. Ye, Rodin and N. N. Rozov: Geographical aspects of biological productivity. Papers of the Fifth Congress of the Geographical Society USSR, Leningrad (1970). Translated in: Soviet Geography: Review & Translation.(1971).Google Scholar
  2. Blackman, G. E.: The limit of plant productivity. Annual report of the East Mailing Research Station for 1961. (1962).Google Scholar
  3. Blackman, G. E.: The application of the concepts of growth analysis to the assessment of productivity, pp. 243–259. In: Functioning of Terrestrial Ecosystems at the Primary Production Level (F. E. Eckardt, Ed.), Paris: UNESCO 1968.Google Scholar
  4. Bolin, B., and C. D. Keeling: Large-scale atmospheric mixing as deduced from the seasonal and meridional variations of carbon dioxide. J. Geophys. Res. 68, 3899–3920 (1963).CrossRefGoogle Scholar
  5. Cole, D. W., S. P. Gessell and S. F. Dice: Distribution and cycling of nitrogen, phosphorus, potassium and calcium in a second-growth Douglas-Fir Ecosystem, p. 197–232. In: Symposium on primary productivity and mineral cycling in natural ecosystems (H. E. Young, Ed.), Orono: University of Maine Press 1967.Google Scholar
  6. Craig, H.: The natural distribution of radiocarbon and the exchange time of carbon dioxide between atmosphere and the sea. Tellus 9, 1–17 (1957).CrossRefGoogle Scholar
  7. Craig, H.: A critical evaluation of radiocarbon techniques for determining mixing rates in the oceans and air using carbon-14. In: Second U.N. Geneva Conference on Peaceful Uses of Atomic Energy, 18, 358–363 (1958).Google Scholar
  8. Dumas, M. J., and M. Boussingault: The chemical and physiological balance of organic nature. An essay. Philos. Mag. 1844 Translation from Third French Edition of 1841 lecture, Paris 1844.CrossRefGoogle Scholar
  9. Duvigneaud, P., and Martin Tanghe: Ecosystèmes et Biosphère — L’Écologie, Science Moderne de Synthese (Vol. 2). (2nd Ed.) Documentation 23, Ministère de L’Education Nationale et de la Culture, Rue de la Loi, 155 Brussels 1967.Google Scholar
  10. Eriksson, E., and P. Welander: On a mathematical model of the carbon cycle in nature. Tellus 8, 155–175 (1956).CrossRefGoogle Scholar
  11. Junge, C. E.: Studies of global exchange processes in the atmosphere by natural and artificial tracers. J. Geophys. Res. 68, 3849–3856 (1963).CrossRefGoogle Scholar
  12. Keeling, Charles D., Thomas Harris, and E. M. Wilkins: Concentration of atmospheric carbon dioxide at 500 and 700 millibars. J. Geophys. Res. 73, 4511–4528 (1968).CrossRefGoogle Scholar
  13. Lieth, H.: Die Stoffproduktion der Pflanzendecke. Stuttgart: G. Fischer 1962.Google Scholar
  14. Lieth, H.: The role of vegetation in the carbon dioxide content of the atmosphere. J. Geophys. Res. 68, 3887–3898 (1963).CrossRefGoogle Scholar
  15. Lieth, H.: Versuch einer kartographischen Darstellung der Produktivität der Pflanzendecke auf der Erde. Geographisches Taschenbuch, 1964–1965. Wiesbaden: Steiner 1965.Google Scholar
  16. Madgwick, H. A. I.: Some factors affecting the vertical distribution of foliage in pine canopies, pp. 233–245. In: Symposium on Primary Productivity and Mineral Cycling in Natural Ecosystems (H. E. Young, Ed.). Orono: University of Maine Press 1968.Google Scholar
  17. Monsi, M.: Dry-matter reproduction in plants. Schemata of dry-matter or reproduction. Bot. Mag. Tokyo, 73, 81–90 (1960).CrossRefGoogle Scholar
  18. Monsi, M.: Mathematical models of plant communities, pp. 131–148. In: Functioning of Terrestrial Ecosystems at the Primary Production Level (F. E. Eckardt, Ed.) Paris: UNESCO 1968.Google Scholar
  19. Neel, R. B., and J. S. Olson: Use of analog computer models for simulating the movement of isotopes in ecosystems. Oak Ridge National Laboratory Report, ORNL-3172 (1962).Google Scholar
  20. Noddack, W.: Der Kohlenstoff im Haushalt der Natur. Z. Schl. Angew. Chem. 50, 505–510 (1937)CrossRefGoogle Scholar
  21. Nydal, R.: Further insertigation on the transfer of radiocarbon in nature. J. Geophys. Res. 75, 3617–1635 (1968).CrossRefGoogle Scholar
  22. Olson, J. S.: Analog computer models for movement of nuclides through ecosystems, pp. 121–125. In: Radioecology, Proc. First National Symposium on Radioecology (V. Schultz, A. Klement Jr., Eds.), 1961, New York: Reinhold Publishing Co. 1963.Google Scholar
  23. Olson, J. S.: Gross and net production of terrestrial vegetation. J. Ecol. 62, 99–118 (1964).CrossRefGoogle Scholar
  24. Olson, J. S., C. D. Keeling, J. B. Hilmon, L. Machta, R. Revelle, W. O. Spofford and F. Smith: Carbon cycle in the biosphere. pp. 160–163 in SCEP (1970).Google Scholar
  25. Ovington, J. D.: Quantitative ecology and the woodland ecosystem concept. Adv. Ecol. Res. I: 103–192(1962).CrossRefGoogle Scholar
  26. Ovington, J. D.: Organic production, turnover and mineral cycling in woodlands. Biol. Rev. 40, 295–336 (1965).CrossRefGoogle Scholar
  27. Rafter, T. A.: Increase in the C14 activity in the atmosphere of the southern hemisphere from the testing of nuclear weapons. N. Zealand J. Sci 8, 472 (1965).Google Scholar
  28. Reichle, D. E., B. E. Dinger, N. T. Edwards, W. F. Harris and P. Sollins: Carbon Flow and Storage in a Forest Ecosystem. In: Carbon and the Biosphere (G. M. Woodwell, Ed.), AEC CONF-720510. US. Gout. Printing Office, Springfield Virginia (1973).Google Scholar
  29. Remezov, N. P.: Relation between biological accumulation and eluvial process under forest cover. Soviet Soil Sci. 1958, 589–598 (1958).Google Scholar
  30. Remezov, N. P.: Method of studying the biological cycle of elements in forest. Soviet Soil Sci. 1959, 59–67 (1959).Google Scholar
  31. Remezov, N. P., L. N. Bykova, and K. M. Smirnova: Consumption and circulation of N and ash elements in forests of European Russia. Published by Moscow State University, Moscow (In Russian) 1959.Google Scholar
  32. Remezov, N. P., Y. M. Samoylova, I. K. Sviridova, and L. G. Bogashova: Dynamics of interaction of oak forest and soil. Soviet Soil. Sci. 1963, 222–232 (1964).Google Scholar
  33. Revelle, R., W. Broecker, H. Craig, C. D. Keeling, and J. Smagorinsky: Atmospheric carbon dioxide, pp. 111–133. In: Restoring the Quality of Our Environment. Environmental Pollution Panel, President’s Science Advisory Committee, The White House, Washington, D. C. 1965.Google Scholar
  34. Riley, G. A.: The carbon metabolism and photosynthetic efficiency of the earth as a whole. Amer. Sci. 32, 129–134 (1944).Google Scholar
  35. Rodin, L. E., and N. I. Bazilevich: Production and mineral cycling in terrestrial vegetation. London: Oliver and Boyd (Translation from Russian): Dynamics of the organic matter and biological turnover of ash elements and nitrogen in the main types of the world vegetation. Leningrad: Publishing house ‘Nauka’, 1965 (1967).Google Scholar
  36. Rodin, L. E., and N. I. Bazilevich: World distribution of plant biomass, pp. 45–52. In: Functioning of Terrestrial Ecosystems at the Primary Production Level (F. E. Eckardt, Ed.), Paris: UNESCO 1968.Google Scholar
  37. Rodin, L. E., and N. I. Bazilevich, L. E. Rodin, and N. I. Bazilevich: Methodical Information on the study of dynamics and biological circulation in plant communities. Leningrad: Publishing house ‘Nauka’, Leningrad Branch 1968.Google Scholar
  38. Schroeder, H.: Die jährliche Gesamtproduktion der grünen Pflanzendecke der Erde. Naturwissenschaften 7, 8–12 (1919).CrossRefGoogle Scholar
  39. Sollins, P., D. E. Reichle, and J. S. Olson: Organic matter budget and model for a Southern Appalachian Liriodendron forest. Eastern Deciduous Forest Biome report EDFB-IBP-73–2, Oak Ridge National Laboratory (1973).Google Scholar
  40. Study of Critical Environmental Problems (SCEP). Man’s Impact on the Global Environment. Cambridge, Mass. MIT Press (1970).Google Scholar
  41. Sukachev, V., and N. Dylis: Fundamentals of forest biogeocoenology. London: Oliver and Boyd (Translation from Russian), Publishing Office ‘Nauka’ Moscow: 1966 (1968).Google Scholar
  42. Tamm, Carl Olaf: An attempt to assess the optimum nitrogen level in Norway spruce under field conditions. Studia Forestalia Suecica, No. 61 (1968).Google Scholar
  43. Vernadsky, V. I.: Outlines of Geochemistry. Akad. Sci. USSR, Moscow (Fourth Edition, 1934, In Russian) 1926.Google Scholar
  44. Vernadsky, V. I.: Geochemie in ausgewählten Kapiteln. Leipzig: Akad. Verlagsges. 1930.Google Scholar
  45. Vernadsky, V. I.: Problems of biogeochemistry. The fundamental matter energy differences between the living and the inert bodies of the biosphere. Trans. Conn. Acad. Arts and Sci. 35, 483–517 (1944).Google Scholar
  46. Westlake, D. F.: Comparisons of plant productivity. Biol. Rev. 38, 385–425 (1963).CrossRefGoogle Scholar
  47. Wittich, W.: Untersuchungen über den Verlauf der Streuzersetzung auf einem Boden mit starker Regenwurmtätigkeit. Reprinted from Schriftenreihe der forstlichen Fakultät der Universität Göttingen und Mitteilungen der niedersächsischen forstlichen Versuchsanstalt, 9, 33p (1953).Google Scholar
  48. Wittich, W.: Die Melioration streugenutzter Böden. Forstw. 73, 193–256 (1954).CrossRefGoogle Scholar
  49. Woodwell, G. (ed.): Carbon and the Biosphere. In U.S. Atomic Energy Commission Report CONF-720510 (1972).Google Scholar
  50. Woodwell, G. (ed.), and T. G. Marples. The influence of chronic gamma irradiation on production and decay of litter and humus in an oak-pine forest. Ecology 49, 456–465 (1968).CrossRefGoogle Scholar
  51. Woodwell, G. (ed.), and R. H. Whittaker: Primary production and the cation budget of the Brookhaven Forest, pp. 151–166. In: Symposium on Primary Productivity and Mineral Cycling in Natural Ecosystems (H. E. Young, Ed.). Orono: University of Maine Press 1968.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1973

Authors and Affiliations

  • J. S. Olson

There are no affiliations available

Personalised recommendations