Update 1990 pp 100-108 | Cite as

Manipulation of the Immunoinflammatory Cascade in Sepsis: Facts and Perspectives

  • J. F. Dhainaut
  • I. Hamy
  • B. Schremmer
Conference paper
Part of the Update in Intensive Care and Emergency Medicine book series (UICM, volume 10)


Septic shock continues to be a frequently encountered problem carrying a high mortality [1]. The invading organism interacts with the host to induce a complex array of responses, the initiating event being the release of microbial toxins. These have been divided into two broad classes: exotoxins (products of Staphylococcus aureus and Clostridium perfringens), and endotoxins (LPS) which originate from the cell wall of gram-negative bacteria. Circulating LPS of bacterial origin continue to have biological effects, even in absence of actively proliferating bacteria.


Septic Shock Plasma Kallikrein High Molecular Weight Kininogen Coagulation Protease Antiendotoxin Monoclonal Antibody 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Luce JM (1987) Pathogenesis and management of septic shock. Chest 91:883–888PubMedCrossRefGoogle Scholar
  2. 2.
    Larrick JW (1989) Antibody inhibition of the immunoinflammatory cascade. J Crit Care 4:211–224CrossRefGoogle Scholar
  3. 3.
    Warren HS, Chedid LA (1987) Strategies for treatment of endotoxemia: significance of the acute-phase response. Rev Infect Dis 9:S630-S638PubMedCrossRefGoogle Scholar
  4. 4.
    Rifkind D (1967) Prevention by polymyxin B of endotoxin lethality in mice. J Bacteriol 93:1463–1464PubMedGoogle Scholar
  5. 5.
    Shenep JL, Morgan KA (1984) Kinetics of endotoxin release during antibiotic therapy for experimental gram-negative bacteria sepsis. J Infect Dis 150:380–388PubMedCrossRefGoogle Scholar
  6. 6.
    Beeson PB (1947) Tolerance to bacterial pyrogens. II. Role of the reticuloendothelial system. J Exp Med 86:39–44PubMedCrossRefGoogle Scholar
  7. 7.
    Greisman SE, Carozza FA Jr, Hills JD (1963) Mechanisms of endotoxin tolerance. I. Relationship between tolerance and reticuloendothelial system phagocytic activity in the rabbit. J Exp Med 117:663–674PubMedCrossRefGoogle Scholar
  8. 8.
    Freedman HH (1959) Passive transfer of protection against lethality of homologous and heterologous endotoxins. Proc Soc Exp Biol Med 102:504–506PubMedGoogle Scholar
  9. 9.
    Mathison JC, Ulevitch RJ (1979) The clearance, tissue distribution, and cellular localization of intravenously injected LPS in rabbits. J Immunol 123:2133–2143PubMedGoogle Scholar
  10. 10.
    Hall CL, Munford RS (1983) Enzymatic deacylation of the lipid A moiety of Salmonella typhimurium LPS by human neutrophils. Proc Natl Acad Sci USA 80:6671–6675PubMedCrossRefGoogle Scholar
  11. 11.
    Baumgartner JD, Glauser MP (1987) Controversies in the use of passive immunotherapy for bacterial infections in the critically ill patient. Rev Infect Dis 9:194–205PubMedCrossRefGoogle Scholar
  12. 12.
    Gorelick K, Jacobs R, Chmel H, et al (1989) Efficacy results of a randomized multicenter trial of E5 antiendotoxin monoclonal antibody in patients with suspected gram-negative sepsis. Abstracts of the 29th ICCAC, p 101 (2)Google Scholar
  13. 13.
    Ziegler EJ (1988) Protective antibody to endotoxin core: The Emperor’s new clothes? J Infect Dis 158:286–290PubMedCrossRefGoogle Scholar
  14. 14.
    McCabe WR, Greely A, DiGenio T, et al (1982) Humoral immunity to type-specific and cross-reactive antigens of gram-negative bacilli. J Infect Dis 128:S284-S289CrossRefGoogle Scholar
  15. 15.
    Salles MF, Mandine E, Zalisz R, Guenounou M, Smets P (1989) Protective effects of murine monoclonal antibodies in experimental septicemia: E. coli antibodies protect against different serotypes of E. coli. J Infect Dis 159:641–647PubMedCrossRefGoogle Scholar
  16. 16.
    Ziegler EJ, McCutchan J A, Fierer J, et al (1983) Treatment of gram-negative bacteremia and shock with human anti-serum to a mutant E. coli. N Engl J Med 37:1225–1230Google Scholar
  17. 17.
    Cochrane GG, Griffin JH (1982) The biochemistry and pathology of the contact system of plasma. In: Kunkel HG, Dixon FJ (eds) Adv immunol, vol 33. Academic Press, New York, pp 241–306Google Scholar
  18. 18.
    Aasen AO (1987) The role of proteolytic enzyme systems with particular emphasis on the plasma kallikrein-kinin system during septicemia and septic shock. In: Vincent JL, Thijs LG (eds) Septic shock. Springer, Berlin Heidelberg New York Tokyo, pp 116–128 (Update in intensive care and emergency medicine, vol. 4)CrossRefGoogle Scholar
  19. 19.
    Erdos EG (1976) The kinins. A status report. Biochem Pharmacol 25:1563–1569PubMedCrossRefGoogle Scholar
  20. 20.
    Wachtfogel YT, Kucich U, James HL, et al (1983) Human plasma kallikrein releases neutrophil elastase during blood coagulation. J Clin Invest 72:1672–1677PubMedCrossRefGoogle Scholar
  21. 21.
    Colman RW (1989) The role of plasma proteases in septic shock. N Engl J Med 320:1207–1209PubMedCrossRefGoogle Scholar
  22. 22.
    Van der Starre P, Sinclair D, Damen J (1980) Inhibition of the hypotensive effect of plasma protein solutions by CI esterase inhibitor. J Thorac Cardiovasc Surg 79:738–741PubMedGoogle Scholar
  23. 23.
    McCabe WR (1973) Serum complement levels in bacteriemia due to gram-negative organisms. N Engl J Med 288:21–23PubMedCrossRefGoogle Scholar
  24. 24.
    Stevens JH, Shapiro JM, Mihm FG, et al (1986) Effect of anti-C5a antibodies on ARDS in septic primates. J Clin Invest 77:1812–1826PubMedCrossRefGoogle Scholar
  25. 25.
    Taylor FB Jr, Chang A, Esmon CT, et al (1987) Protein C prevents the coagulopathic and lethal effect of E coli infusion in the baboon. J Clin Invest 79:918–926Google Scholar
  26. 26.
    Vinazzer H (1987) Therapeutic use of antithrombin III in shock and DIC. Symposium on “Newer strategies in the management of thrombotic disorders”. ChicagoGoogle Scholar
  27. 27.
    Morrissey JH, Fakhrai H, Edgington TS (1987) Molecular cloning of the cDNA for tissue factor, the cellular receptor for the initiation of the coagulation protease cascade. Cell 50:129–135PubMedCrossRefGoogle Scholar
  28. 28.
    Schlag G, Redl H (1987) Mediators of sepsis. In: Vincent JL, Thijs LG (eds) Septic shock. Springer, Berlin Heidelberg New York Tokyo, pp 51–73 (Update in intensive care and emergency medicine, vol. 4)CrossRefGoogle Scholar
  29. 29.
    Beutler B, Cerami A (1988) The common mediator of shock, cachexia and tumor necrosis. Adv Immunol 42:213–231PubMedCrossRefGoogle Scholar
  30. 30.
    Michie HR, Spriggs DR, Manogue KR, et al (1988) Tumor necrosis factor and endotoxin induce similar metabolic responses in human beings. Surgery 104:280–286PubMedGoogle Scholar
  31. 31.
    Tracey KJ, Lowry SF, Fahey TJ, et al (1987) Cachectin/TNF induces lethal shock and stress hormone responses in the dog. Surg Gynecol Obstet 164:415–422PubMedGoogle Scholar
  32. 32.
    Tracey KJ, Fong Y, Hesse DG, et al (1987) Anti-cachectin/TNF monoclonal antibodies present septic shock during lethal bacteremia. Nature 330:662–664PubMedCrossRefGoogle Scholar
  33. 33.
    Kettelhut IC, Fiers W, Goldberg AL (1987) The toxic effect of tumor necrosis factor in vivo and their prevention by cyclooxygenase inhibitors. Proc Natl Acad Sci USA 84:4273–4277PubMedCrossRefGoogle Scholar
  34. 34.
    Mandell GL (1988) ARDS, neutrophils and pentoxifylline. Am Rev Respir Dis 138:1103–1105PubMedGoogle Scholar
  35. 35.
    Dinarello CA (1984) Interleukin-1 and the pathogenesis of the acute-phase response. N Engl J Med 311:1413–1418PubMedCrossRefGoogle Scholar
  36. 36.
    Larrick JW, Kunkel SL (1988) The role of tumor necrosis factor and IL-1 in the immunoinflammatory response. Pharmaceutical Res 5:129–139CrossRefGoogle Scholar
  37. 37.
    Okusawa S, Gelfand JA, Ikejima T, Connatty RJ, Dinarello CA (1988) Interleukin 1 induces a shock-like state in rabbits: synergism with tumor necrosis factor and the effect of cyclooxygenase inhibition. J Clin Invest 81:1162–1172PubMedCrossRefGoogle Scholar
  38. 38.
    Girardin E, Grau GE, Dayer JM, Roux-Lombard P, et al (1988) Tumor necrosis factor and interleukin 1 in the serum of children with severe infectious purpura. N Engl J Med 319:397–400PubMedCrossRefGoogle Scholar
  39. 39.
    Talmadge JE, Bowersox O, Tribble H, Sang He Lee, Shepard M, Liggitt D (1987) Toxicity of TNF is synergistic with gamma-interferon and can be reduced with cyclooxygenase inhibitors. Am J Pathol 128:410–425PubMedGoogle Scholar
  40. 40.
    Matsushima K, Morishita K, Yoshimura T, et al (1988) Molecular cloning of a human monocyte-derived neutrophil chemotactic factor (MDNCF) and the induction of MDNCF mRNA by IL-1 and TNF. J Exp Med 167:1883–1893PubMedCrossRefGoogle Scholar
  41. 41.
    Makgoba MW, Sanders ME, Luce GE, et al (1988) ICAM-1 is a ligand for LFA-l-dependent adhesion of B, T and myeloid cells. Nature 331:86–88PubMedCrossRefGoogle Scholar
  42. 42.
    Dustin ML, Rothlein R, Bhan AK, et al (1986) Induction of IL-1 and interferon gamma: tissue distribution, biochemistry and function of a natural adherence molecule (ICAM-1). J Immunol 137:245–253PubMedGoogle Scholar
  43. 43.
    Schoenberg MH (1987) Participation of oxygen free radicals in septic shock. In: Vincent JL, Thijs LG (eds) Septic shock. Springer, Berlin Heidelberg New York Tokyo (Update in intensive care and emergency medicine, vol. 4, pp 108–115)CrossRefGoogle Scholar
  44. 44.
    Slater TF (1984) Free radical mechanism in tissue injury. Biochem J 222:1–15PubMedGoogle Scholar
  45. 45.
    Bernard GR, Lucht WD, Niedermeyer ME (1984) Effect of N-acethylcystein on the pulmonary response to endotoxin in the awake sheep and upon in vitro granulocyte function. J Clin Invest 73:1772–1784PubMedCrossRefGoogle Scholar
  46. 46.
    Oettinger W (1987) Role of prostaglandins and thromboxane. In: Vincent JL, Thijs LG (eds) Septic shock. Springer, Berlin Heidelberg New York Tokyo (Update in intensive care and emergency medicine, vol. 4, pp 89–107)CrossRefGoogle Scholar
  47. 47.
    Holcroft JW, Vassar MJ, Weber CJ (1986) Prostaglandin El and survival in patients with the adult respiratory distress syndrome. A prospective trial. Ann Surg 203:371–378PubMedCrossRefGoogle Scholar
  48. 48.
    Ogletree ML, Brigham KL (1979) Indomethacin augments endotoxin induced increased lung vascular permeability in sheep. Am Rev Respir Dis 119:383–389Google Scholar
  49. 49.
    Hinds CJ (1987) Endogenous opioids in shock. In: Vincent JL, Thijs LG (eds) Septic shock. Springer, Berlin Heidelberg New York Tokyo (Update in intensive care and emergency medicine, vol. 4, pp 268–275)CrossRefGoogle Scholar
  50. 50.
    Holaday JW, Faden AI (1978) Naloxone reversal of endotoxin hypotension suggests role of endorphins in shock. Nature 275:450–451PubMedCrossRefGoogle Scholar
  51. 51.
    Parratt JR, Pacitti N (1987) In: Vincent JL, Thijs LG (eds) Septic shock. Springer, Berlin Heidelberg New York Tokyo (Update in intensive care and emergency medicine, vol. 4, pp 74–88)CrossRefGoogle Scholar
  52. 52.
    Sun X, Hsueh W (1988) Bowell necrosis induced by tumor necrosis factor in rats is mediated by plateled-activating factor. J Clin Invest 81:1328–1331PubMedCrossRefGoogle Scholar
  53. 53.
    Waage A (1987) Production and clearance of tumor necrosis factor in rats exposed to endotoxin and dexamethasone. Clin Immunol Immunopath 45:348–355CrossRefGoogle Scholar
  54. 54.
    Colardyn F, Vogelaers D (1987) Corticosteroids in patients with septic shock. In: Vincent JL, Thijs LG (eds) Septic shock. Springer, Berlin Heidelberg New York Tokyo, pp 260–267CrossRefGoogle Scholar
  55. 55.
    Bone RC, Fischer CJ, Clemmer TP, et al (1987) A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock. N Engl J Med 317:653–658PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • J. F. Dhainaut
  • I. Hamy
  • B. Schremmer

There are no affiliations available

Personalised recommendations