Perpendicular Transport in GaAs-GaAlAs High Electron Mobility Transistors

  • J. Smoliner
  • E. Gornik
  • G. Weimann
  • K. Ploog
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 83)


The thickness of conventional GaAs-GaAlAs High Electron Mobility Transistors (HEMTs) is in the order of 1000 Å or smaller. Therefore, the perpendicular transport in such structures will strongly be influenced by tunneling effects. Investigating the tunneling current perpendicular to the GaAlAs barrier, which had a typical thickness of 500 Å on our samples, oscillatory behavior was observed in dI/dV on HEMT structures having a shallow alloyed gate contact. Using a Fowler-Nordheim tunneling theory, we were able to determine the conduction band discontinuity from the observed oscillations. The fit of the data gave a value of ΔEc/ΔEg=0.61±0.04 for aluminum concentrations of 30%, 36%, and 40%.

On samples having a semitransparent Au Schottky-gate contact the bandstructure was varied by illumination. Sharp peaks were observed in the derivative of the tunneling current after illumination at liquid helium temperature. Using a self consistent model, these peaks could be explained by resonant tunneling via subband states in the GaAlAs.

The subband energies in the two-dimensional electron gas (2DEG) were measured by tunneling spectroscopy on samples, where the tunneling process starts from an accumulation layer, and conventional structures, where the electrons tunnel from a metal electrode into the 2DEG. Self-consistent calculations were performed to determine the depletion charge from the measured subband energies. Furthermore the influence of a back-gate voltage was investigated both experimentally and theoretically.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M.O. Watanabe, Y. Yoshida, M. Mashita, T. Nakanisi, A. Hojo, J.Appl. Phys. 57, 5340, (1985)CrossRefGoogle Scholar
  2. [2]
    H. Krömer, W.Y. Chien, J.S. Harris Jr, D.D. Edwall, Appl. Phys. Lett: 36, 295. (1980)CrossRefGoogle Scholar
  3. [3]
    D. Arnold, A. Ketterson, T. Henderson, J. Klem, H. Morkoc, J. Appl. Phys. 57, 2880, (1985)CrossRefGoogle Scholar
  4. [4]
    J. Batey, S.L. Wright, D.J. DiMaria, J. Appl. Phys. 57, 484, (1985)CrossRefGoogle Scholar
  5. [5]
    T.W. Hickmott, P.M. Solomon, R. Fischer, H. Morkoc, J. Appl. Phys. 57, 2844, (1985)CrossRefGoogle Scholar
  6. [6]
    F. Stern, S.D. Sarma, Phys. Rev. B 30, 840, (1984)CrossRefGoogle Scholar
  7. [7]
    A.N. Khondker, A.F.M. Anwar, Solid State Electron. 38, 847, (1987)CrossRefGoogle Scholar
  8. [8]
    D. Delagebeaudeuf, L.T. Linh, IEEE Trans. Electron Dev. ED-29, 955 (1982)Google Scholar
  9. [9]
    B. Vinter, Appl. Phys. Lett. 44, 307, (1984)CrossRefGoogle Scholar
  10. [10]
    B. Vinter, Solid State Comm. 48, 151, (1983)CrossRefGoogle Scholar
  11. [11]
    D.J. BenDaniel, C.B. Duke, Phys. Rev. 160, 679, (1967)CrossRefGoogle Scholar
  12. [12]
    D.C. Tsui, Phy. Rev. Lett. 24, 303, (1970)CrossRefGoogle Scholar
  13. [13]
    D.C. Tsui, Phys. Rev. B 4, 4438, (1971)CrossRefGoogle Scholar
  14. [14]
    D.C. Tsui, G. Kaminsky. P.H. Schmidt, Phys. Rev. B 9, 3524, (1974)CrossRefGoogle Scholar
  15. [15]
    Pong-Fei Lu, D.C. Tsui, H.M. Cox, Appl. Phys. Lett. 45, 772, (1984)CrossRefGoogle Scholar
  16. [16]
    U. Kunze, J.Phys. C, 17 5677, (1984)CrossRefGoogle Scholar
  17. [17]
    T.W. Hickmott, P.M. Solomon, R. Fischer, H. Morkoc, Appl. Phys. Lett. 44, 90, (1984)CrossRefGoogle Scholar
  18. [18]
    J. Maserjian, J.Vac. Sci. Technol. 11, 996, (1974)CrossRefGoogle Scholar
  19. [19]
    K.H. Gundlach, Solid State Electron. 9, 949, (1966)CrossRefGoogle Scholar
  20. [20]
    F. Stern, Appl. Phys. Lett. 43, 949, (1983)CrossRefGoogle Scholar
  21. [21]
    K. Hirakawa, H. Sakaki, J. Yoshino, Appl. Phys. Lett. 45, 253, (1984)CrossRefGoogle Scholar
  22. [22]
    W.W. Liu, L. Fukuma, M. Fukuma, J. Appl. Phys. 60, 1555, (1986)CrossRefGoogle Scholar
  23. [23]
    J. Smoliner, R. Christanell, M. Hauser, E. Gornik, G. Weimann, K Ploog, Appl. Phys. Lett. 50, 1727, (1987)CrossRefGoogle Scholar
  24. [24]
    H. Ohnishi, T. Inata, S. Muto, N. Yokoyama, A. Shibatomi, Appl. Phys. Lett. 49, 1248, (1986)CrossRefGoogle Scholar
  25. [25]
    Y. Ando, T. Itoh, J. Appl. Phys. 61, 1497, (1987)CrossRefGoogle Scholar
  26. [26]
    T. Ando, A.B. Fowler, F. Stern, Rev. Mod. Phys. 54, 437, (1982)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • J. Smoliner
    • 1
  • E. Gornik
    • 1
  • G. Weimann
    • 2
  • K. Ploog
    • 3
  1. 1.Institut für ExperimentalphysikUniversität InnsbruckInnsbruckAustria
  2. 2.Forschungsinstitut der Deutschen BundespostDarmstadtFed.Rep.of Germany
  3. 3.Max-Planck-Institut für FestkörperforschungStuttgart 80Fed.Rep.of Germany

Personalised recommendations