Advertisement

Fabrication and Optical Characterization of Semiconductor Quantum Wires

  • A. Forchel
  • B. E. Maile
  • H. Leier
  • R. Germann
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 83)

Abstract

We have investigated different approaches to effectively one dimensional III-V semiconductor structures (quantum wires) with dimensionality dependent optical properties. The quantum wires are defined by high resolution electron-beam. lithography. By dry etching or selective implantation induced interdiffusion the patterns are transferred into the semiconductor material. The nanometer structures are analyzed by photoluminescence spectroscopy. In etched GaAs/GaAlAs wires we observe a strong decay of the quantum efficiency as the lateral width is reduced. This can be related to the high surface recombination velocity and surface depletion in GaAs. In InGaAs/ InP quantum wires, in contrast, the quantum efficiency is only weakly affected by surface effects. Using implantation induced interdiffusion we have defined buried quantum wire structures in GaAs/Ga.A1As. The photoluminescence spectra show clear lateral quantization effects.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Esaki, R. Tsu, IBM Research Note RC-2418 (1969);Google Scholar
  2. 2.
    G. Weimann, W. Schlapp, in Springer Series in Solid State Physics 53, 88 (1984).CrossRefGoogle Scholar
  3. 3.
    N.T. Linh, Advances in Solid State Physics 23, 227 (1983), Vieweg-Verlag, Braunschweig.CrossRefGoogle Scholar
  4. 4.
    R. Dingle, Advances in Solid State Physics 15 21 (1975), Vieweg-Verlag, Braunschweig.CrossRefGoogle Scholar
  5. 5.
    R. Dingle, W. Wiegmann, C.H. Henry, Phys. Rev. Lett. 13, 827 (1974).CrossRefGoogle Scholar
  6. 6.
    R.C. Miller, D.A. Kleinmann, J. Lum. 30, 520 (1985).CrossRefGoogle Scholar
  7. 7.
    A. Forchel, U. Cebulla, G. Tränkle, H. Kroemer, S. Subbanna, G. Griffiths Surf. Science 174, 143 (1986).Google Scholar
  8. 8.
    J.C. Maan, G. Belle, A. Fasolino, M. Altarelli, K. Ploog, Phys. Rev. B 30, 2253 (1984).CrossRefGoogle Scholar
  9. 9.
    J. Feldmann, G. Peter, E.O. Göbel, P. Dawson, K. Moore, C. Foxon, R. Elliot, Phys. Rev. Lett. 59, 2337 (1987).CrossRefGoogle Scholar
  10. 10.
    G. Tränkte, H. Leier, A. Forchel, C. Ell, H. Haug, G. Weimann, Phys. Rev. Lett. 58, 419 (1987).CrossRefGoogle Scholar
  11. 11.
    Y. Arakawa, H. Sakaki, Appl. Phys. Lett. 40, 939 (1982).CrossRefGoogle Scholar
  12. 12.
    H. Hassan, H. Spector, J. Vac. Sci. Tech. A 3, 22 (1985).Google Scholar
  13. 13.
    H. Sakaki, Jap. J. Appl. Phys. 19, L735 (1980).Google Scholar
  14. 14.
    A.C. Warren, I. Plotnik, E.H. Anderson, M.L. Schattenburg D.A. Antoniadis, H.I. Smith, J. Vac. Sci. Tech. B 4, 365 (1986).CrossRefGoogle Scholar
  15. 15.
    S. Namba, Microelectronic Eng. §., 315 (1987).Google Scholar
  16. 16.
    F. Emoto, K. Gamo, S. Namba, N. Samoto, R. Shimizu, Jap. J. Appl. Phys. 24, L809 (1985).CrossRefGoogle Scholar
  17. 17.
    A.R. Reinberg, in “VLSI Electronics - Microstructure Science”, Vol. 2 Academic Press, New York, 1981.Google Scholar
  18. 18.
    B.E. Maile, A. Forchel, R. Germann, A. Menschig, K. Streubel, F. Scholz, G. Weimann, W. Schlapp, Microcircuit Eng. 6, 163 (1987).CrossRefGoogle Scholar
  19. 19.
    A. Forchel, H. Leier, B.E. Malle, R. Germann, Advances in Solid State Physics, Vieweg Verlag, 1988, in press.Google Scholar
  20. 20.
    M. Korn, A. Forchel, M. Möhrle, R. Germann, K. Streubel, F. Scholz, Microcircuit Eng. 6.551 (1987).CrossRefGoogle Scholar
  21. 21.
    R.E. Howard, L.D. Jackel, W.J. Skocpol, Microelectronic Eng. 3, 3 (1985).CrossRefGoogle Scholar
  22. 22.
    B.E. Malle, A. Forchel, A. Menschig, R. Germann, H. Meier, to be published.Google Scholar
  23. 23.
    H.C. Casey, E. Buehler, Appl. Phys. Lett. 30 247 (1977).CrossRefGoogle Scholar
  24. 24.
    The value of the surface recombination velocity in InGaAs can be estimated from ref. 23 in conjunction with ref. 25.Google Scholar
  25. 25.
    H. Temkin, G.J. Dolan, M.B. Panish, S.N.G. Chu, Appl. Phys. Lett. 50, 413 (1987).CrossRefGoogle Scholar
  26. 26.
    P.M. Petroff, A.C. Gossard, R.A. Logan, W. Wiegmann, Appl Phys. Lett. 41 635 (1982)CrossRefGoogle Scholar
  27. 27.
    R.E. Behringer, P.M. Mankiewich, R.E. Howard, J. Vac. Sci. Technol. B 5 326 (1987).CrossRefGoogle Scholar
  28. 28.
    W. Hansen, M. Horst, J.P. Kotthaus, U. Merkt, Ch. Sikorski, Phys. Rev. Lett. 58 2586 (1987).CrossRefGoogle Scholar
  29. 29.
    W.D. Laidig, N. Holonyak, M.D. Camras, K. Hess, J.J. Coleman, P.D. Dapkus, J. Bardeen, Appl. Phys. Lett. 38, 776 (1981)CrossRefGoogle Scholar
  30. 30.
    J.J. Coleman, P.D. Dapkus, C.G. Kirkpatrick, M.D. Camras, N. Holonyak, Appl. Phys. Lett. 40, 904 (1982).CrossRefGoogle Scholar
  31. 31.
    H. Leier, H. Rothfritz, A. Forchel, G. Weimann, to be published.Google Scholar
  32. 32.
    M. Komuro, H. Hiroshima, H. Tanoue, T. Kanayama, J. Vac. Sci. Technol. B 4, 985 (1983).CrossRefGoogle Scholar
  33. 33.
    J. Cibert, P.M. Petroff, G.J. Dolan, S.J. Pearton, A.C. Gossard, J.H. English, Appl. Phys. Lett. 49, 1275 (1988).CrossRefGoogle Scholar
  34. 34.
    Y. Hirayama, S. Tarucha, Y. Suzuki, H. Okamoto, Phys. Rev. B 37 2774 (1988).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • A. Forchel
    • 1
  • B. E. Maile
    • 1
  • H. Leier
    • 1
  • R. Germann
    • 1
  1. 1.4. Physikalisches InstitutUniversität StuttgartStuttgart 80Fed.Rep.of Germany

Personalised recommendations