Advertisement

Resonant Tunneling Barrier Structures and Their Applications to the Resonant Tunneling Hot Electron Transistor

  • S. Hiyamizu
  • S. Muto
  • T. Inata
  • S. Sasa
  • T. Fujii
  • K. Imamura
  • H. Ohnishi
  • N. Yokoyama
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 83)

Abstract

In 1981, we started to develop a new ultrahigh-speed device with a multilayer structure of III-V compound semiconductors, as one of the future electron devices. The device was required to exhibit new functions based on quantum mechanical effects and to operate faster than any conventional devices. Recently, we developed a resonant tunneling hot electron transistor (RHET) [1] which has a resonant tunneling barrier (RTB) structure as an emitter barrier and exhibits new functions due to the negative differential resistance (NDR) of the RTB structure. In this paper, we describe an RHET — one of the most promising candidates for the future electron devices — and extremely excellent NDR characteristics of device-quality RTB structures grown by MBE which lead to much improved device performance of RHET.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Yokoyama, K. Imamura, S. Muto, S. Hiyamizu, H. Nishi: Jpn. J. Appl. Phys. 24, L853 (1985)CrossRefGoogle Scholar
  2. 2.
    N. Yokoyama, K. Imamura, H. Ohnishi, H. Nishi, S. Muto, K. Kondo, S. Hiyamizu: Jpn. J. Appl. Phys. 23, L311 (1984)CrossRefGoogle Scholar
  3. 3.
    N. Yokoyama, K. Imamura, H. Ohnishi, H. Nishi, S. Muto, K. Kondo, S. Hiyamizu: IEDM Technical Digest (1984) p. 532Google Scholar
  4. 4.
    A. Kastalsky; S. Luryi: IEEE Electron Device Lett. EDL-4, 334 (1983)Google Scholar
  5. 5.
    N. Yokoyama, K. Imamura: Electron. Lett. 22, 1228 (1986)CrossRefGoogle Scholar
  6. 6.
    N.Yokoyama: Extended Abstracts of 18th Conf. Solid State Devices and Materials, Tokyo, 1986, p. 347Google Scholar
  7. 7.
    T. Mori, H. Ohnishi, K. Imamura, S. Muto, N. Yokoyama: Appl. Phys. Lett. 49, 1779 (1986)CrossRefGoogle Scholar
  8. 8.
    This is required to obtain enough noise margin for logic circuits with RHETsGoogle Scholar
  9. 9.
    This high peak current density is necessary to achieve a very short charging time (about 1 [ps]) of a capacitor between the base and the emitter of an RHETGoogle Scholar
  10. 10.
    R. Tsu, L. Esaki: Appl. Phys. Lett. 22, 562 (1973)CrossRefGoogle Scholar
  11. 11.
    L.L. Chang, L. Easki, R. Tsu: Appl. Phys. Lett. 24, 593 (1974)CrossRefGoogle Scholar
  12. 12.
    T.C.L.G. Sollnor, W.D. Goodhue, P.E. Tannenwald, C.D. Parker, D.D. Peck: Appl. Phys. Lett. 43, 588 (1983)CrossRefGoogle Scholar
  13. 13.
    M. Tsuchiya, H. Sakaki, J. Yoshino: Jpn. J. Appl. Phys. 24, L466 (1985)CrossRefGoogle Scholar
  14. 14.
    M. Tsuchiya, H. Sakaki: Appl. Phys. Lett. 49, 88 (1986)CrossRefGoogle Scholar
  15. 15.
    M. Tsuchiya, H. Sakaki: Jpn. J. Appl. Phys. 25, L185 (1986)CrossRefGoogle Scholar
  16. 16.
    T.J. Shewchuk, P.C. Chapin, P.D. Coleman, W. Kopp, R. Fischer, H. Morkoc: Appl. Phys. Lett. 46, 508 (1985)CrossRefGoogle Scholar
  17. 17.
    H. Morkoc, J. Chen, K. Rebby, S. Luryi, T. Henderson: Appl. Phys. Lett. 49, 70 (1986)CrossRefGoogle Scholar
  18. 18.
    W.D. Goodhue, T.C.L.G. Sollnor, H.Q. Le, E.R. Brown, B.A. Vojak: Appl. Phys. Lett. 49, 1086 (1986)CrossRefGoogle Scholar
  19. 19.
    S. Muto, T. Inata, H. Ohnishi, N. Yokoyama, S. Hiyamizu: Jpn. J. Appl. Phys. 25, L577 (1986)CrossRefGoogle Scholar
  20. 20.
    S. Muto,,N. Yokoyama, S. Hiyamizu: Proc. High Speed Electronis, Stockholm, 1986 (Springer-Verlag, Berlin, Heidelberg, 1987 ) p. 72Google Scholar
  21. 21.
    T. Inata, S. Muto, Y. Nakata, T. Fujii, H. Ohnishi, S. Hiyamizu: Jpn. J. Appl. Phys. 25, L983 (1986)CrossRefGoogle Scholar
  22. 22.
    S. Hiyamizu, T. Fujii, S. Muto, T. Inata, Y. Sugiyama, S. Sasa: J. Crystal Growth 81, 349 (1987)CrossRefGoogle Scholar
  23. 23.
    S. Muto, T. Inata, Y. Sugiyama, Y. Nakata, T. Fujii, S. Hiyamizu: Jpn. J. Appl. Phys. 26, L220 (1987)CrossRefGoogle Scholar
  24. 24.
    Y. Sugiyama, T. Inata, S. Muto, Y. Nakata, S. Hiyamizu: Appl. Phys. Lett. 52, 314 (1988)CrossRefGoogle Scholar
  25. 25.
    T. Inata, S. Muto, Y. Nakata, S. Sasa, T. Fujii, S. Hiyamizu: Jpn. J. Appl. Phys. 26, L1332 (1987)CrossRefGoogle Scholar
  26. 26.
    T. Inata, S. Muto, S. Sasa, T. Fujii, S. Hiyamizu: Extended Abstracts 19th Conf. Solid State Devices and Materials, Tokyo, 1987, p. 359Google Scholar
  27. 27.
    J.W. Mathews, A.E. Blakeslee: J. Crystal Growth 27, 118 (1974)Google Scholar
  28. 28.
    K. Imamura, S. Muto, H. Ohnishi, T. Fujii, N. Yokoyama: Program of 45th Annual Device Research Conf., Santa Barbara, VIA-3Google Scholar
  29. 29.
    F. Capasso et al: IEEE Electron Device Lett. EDL-7, 573 (1986)CrossRefGoogle Scholar
  30. 30.
    T. Futatsugi et al: Jpn. J. Appl. Phys. 26, L131 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • S. Hiyamizu
    • 1
  • S. Muto
    • 2
  • T. Inata
    • 2
  • S. Sasa
    • 2
  • T. Fujii
    • 2
  • K. Imamura
    • 2
  • H. Ohnishi
    • 2
  • N. Yokoyama
    • 2
  1. 1.Faculty of Engineering ScienceOsaka UniversityToyonaka, OsakaJapan
  2. 2.Fujitsu LimitedAtsugiJapan

Personalised recommendations