Visualization and Theoretical Modelling of the Atomistic Structure of Semiconductor Quantum Well Interfaces

  • J. Christen
  • D. Bimberg
  • T. Fukunaga
  • H. Nakashima
  • D. E. Mars
  • J. N. Miller
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 83)


The atomic scale crystallographic and chemical properties of interfaces between semiconductors are of decisive importance for the performance of novel generations of electronic and photonic devices and are in addition of large fundamental interest. Optical methods like luminescence and absorption have recently emerged to yield quantitative information on these properties, if the corresponding lineshape are carefully analyzed. We emphasize here luminescence. The natural lineshape of luminescence from a quantum well shows Gaussian broadening if its interfaces are not ideally abrupt. A detailed lineshape theory is outlined, allowing for a quantitative determination of the interface roughness distribution function. We find this function to depend in a delicate way on growth rates, temperature, interruption time and chemical compositon of the growth surface. The results of an experimental study of the model quantum well system AlGaAs/GaAs/AlGaAs grown by molecular beam epitaxy with and without interruption of the growth at the interfaces is presented. Roughness reduction upon growth interruption is analyzed in detail. For specific growth conditions and interruptions of 2 min at both interfaces formation of up to 7 µm large interface islands differing by a one monolayer step (2.8 A) are observed. Consequently such quantum wells have a columnar structure, which can be directly visualized using cathodoluminescence imaging. Strong reduction of island size indicating transition from planar growth to three-dimensional growth is observed by CLI upon an increase of growth temperature from Tg = 600°C to 660°C.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /1/.
    D. Bimberg, D. Mars, J.N. Miller, R. Bauer, D. Oertel, J.Vac.Sci.Technol. B 4, 1014 (1986)CrossRefGoogle Scholar
  2. /2/.
    D. Bimberg, J. Christen, T. Fukunaga, H. Nakashima, D. Mars, J.N. Miller, J.Vac.Sci.Technol. B 5, 1191 (1987)CrossRefGoogle Scholar
  3. /3/.
    J.H. Neave, B.A. Joyce, P.J. Dobson, N. Norton, Appl.Phys. A 31, 1 (1983)CrossRefGoogle Scholar
  4. /4/.
    T. Sakamato, H. Funabashi, K. Ohta, T. Nakagawa, N.J. Kowai, T. Kojima, Y. Bando, Superl. and Microstr., 1, 347 (1985)CrossRefGoogle Scholar
  5. /5/.
    B.F. Lewis, F.J. Grunthamer, A. Madhukar, T.C. Lee, R. Fernandez, J.Vac.Sci.Technol. B 3, 1317 (1985)CrossRefGoogle Scholar
  6. /6/.
    A. Steckenborn, H. Münzel, D. Bimberg, J.Luminescence 24/25, 351 (1981) and Inst.Phys.Conf., Ser. 60, 185 (1981)Google Scholar
  7. /7/.
    D. Bimberg, H. Münzel, A. Steckenborn, J. Christen, Phys.Rev. B 31, 7788 (1985)CrossRefGoogle Scholar
  8. /8/.
    J. Singh, K.K. Bajaj, S. Chaudhuri, Appl.Phys.Lett. 44, 805 (1984)CrossRefGoogle Scholar
  9. J. Singh, K.K. Bajaj, J.Appl.Phys. 57, 5433 (1985)CrossRefGoogle Scholar
  10. /9/.
    R. Hull, K.W. Carey, J.E. Fouquet, G.A. Reid, S.J. Rosner, D. Bimberg, D. Oertel, Proc.Int.Symposium on GaAs and Related Compounds, Las Vegas 1986, in printGoogle Scholar
  11. /10/.
    D. Bimberg, D. Mars, J.N. Miller, R. Bauer, D. Oertel, J. Christen, Superl.and Synth.Microstructures 3, 79 (1987) and Proc. MSS III, Physique, in printCrossRefGoogle Scholar
  12. /11/.
    P.T. Landsberg, Proc.Phys.Soc., A 62, 806 (1949) and Phys.Stat.Sol. 15, 623 (1966)CrossRefGoogle Scholar
  13. /12/.
    J. Christen, D. Bimberg, A. Steckenborn, G. Weimann, Appl.Phys.Lett. 44, 84 (1984)CrossRefGoogle Scholar
  14. D. Bimberg, J. Chrsiten, A. Werner, M. Kunst, G. Weimann, W. Schlapp, Appl.Phys.Lett. 49, 76 (1986)CrossRefGoogle Scholar
  15. /13/.
    G. Bastard, Phys.Rev. B 24, 5693 (1981)CrossRefGoogle Scholar
  16. /14/.
    R. Bauer, D. Bimberg, J. Christen, D. Oertel, D. Mars, J.N. Miller,T. Fukinaga, H. Nakashima, Proc. 18th Conf. Phys. Semiç., Stockholm 1986, in printGoogle Scholar
  17. /15/.
    G. Weimann, private communicationGoogle Scholar
  18. /16/.
    D. Bimberg, J. Christen, T. Fukunaga, H. Nakashima, D.E. Mars and J.N. Miller, Superlatt. and Microstructures 4 (1988), in printGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • J. Christen
    • 1
  • D. Bimberg
    • 1
  • T. Fukunaga
    • 2
  • H. Nakashima
    • 3
  • D. E. Mars
    • 4
  • J. N. Miller
    • 4
  1. 1.Institut für FestkörperphysikTechnischen UniversitätBerlin 12Germany
  2. 2.Oki Electric Industry Co.TokyoJapan
  3. 3.Institute of Industrial and Scientific ResearchOsaka UniversityJapan
  4. 4.Hewlett-Packard LaboratoriesPalo AltoUSA

Personalised recommendations