Universal Fluctuations and Conductance Asymmetry in Mesoscopic Silicon MOSFETs

  • S. B. Kaplan
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 83)


The conductance of very small silicon metal-oxide-semiconductor field-effect transistors (MOSFETs) contains aperiodic structure known as universal conductance fluctuations. Fluctuations of nearly the same amplitude are observed when either the magnetic field or the gate voltage is varied. Structure in the magnetoconductance of inversion and accumulation layers is correlated for closely spaced values of the Fermi energy. The period of magnetoconductance fluctuations for samples tilted in a magnetic field is dependent on the perpendicular component of the applied field. When the source-drain voltage across the device is increased, the conductance becomes increasingly asymmetric until the fluctuation amplitude is decreased by electron heating. The role of quantum interference and disorder in causing these phenomena will be discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. L. Al’tshuler, Pis’ma Zh. Eskp. Teor. Fiz. 41, 530 (1985) [JETP Lett. 41, 648 (1985)]Google Scholar
  2. 2.
    A. D. Stone, Phys. Rev. Lett. 54, 2692 (1985).CrossRefGoogle Scholar
  3. 3.
    Y. Aharonov and D. Bohm, Phys Rev. 115, 485(1959).CrossRefGoogle Scholar
  4. Y. Aharonov and D. Bohm, Phys Rev. 123, 1511 (1961).CrossRefGoogle Scholar
  5. 4.
    L. Gunther and Y. Imry, Sol. St. Comm. 7, 1391 (1969).CrossRefGoogle Scholar
  6. 5.
    M. Buttiker, Y. Imry and R. Landauer, Phys. Lett. 96A, 365 (1983).CrossRefGoogle Scholar
  7. 6.
    R. A. Webb, S. Washburn, C. P. Umbach and R. B. Laibowitz, Phys. Rev. Lett. 54, 2696 (1985).CrossRefGoogle Scholar
  8. 7.
    C. P. Umbach, S. Washburn, R. B. Laibowitz and R. A. Webb, Phys. Rev. B30, 4048 (1984);CrossRefGoogle Scholar
  9. R. A. Webb, S. Washburn, C. P. Umbach and R. B. Laibowitz, Interaction and Transport Phenomena in Impure Metals, edited by B. Kramer, G. Bergmann and Y. Bruynseraede ( Springer-Verlag, New York, 1985 ).Google Scholar
  10. 8.
    G. Blonder, Bull. Am. Phys. Soc. 29, 535 (1984).Google Scholar
  11. 9.
    P. A. Lee and A. D. Stone, Phys. Rev. Lett. 55, 1622 (1985).CrossRefGoogle Scholar
  12. 10.
    B. L. Al’tshuler and D. E. Khmel’nitskii, Pis’ma Zh. Eskp. Tear. Fiz. 42, 291 (1985); [JETP Lett. 42, 360 (1985)].Google Scholar
  13. 11.
    Y. Imry, Europhys. Lett. 1, 249 (1986).CrossRefGoogle Scholar
  14. 12.
    P. A. Lee, A. D. Stone and H. Fukuyama, Phys. Rev. B 35, 1039 (1987).CrossRefGoogle Scholar
  15. 13.
    S. B. Kaplan and A. Hartstein, Phys. Rev. Lett. 56, 2403 (1986).CrossRefGoogle Scholar
  16. 14.
    S. B. Kaplan and A. Hartstein, in Proceedings of the 18th Int. Conf. on the Physics of Semiconductors, ( World Scientific, Singapore, 1987 ), p. 1499.Google Scholar
  17. 15.
    S. B. Kaplan, to appear in Surface Science.Google Scholar
  18. 16.
    R. A. Webb, A. Hartstein, J. J. Wainer and A. B. Fowler, Phys. Rev. Lett. 54, 1577 (1985).CrossRefGoogle Scholar
  19. 17.
    P. A. Lee, Phys. Rev. Lett. 53, 2042–2045, (1984).CrossRefGoogle Scholar
  20. 18.
    J. C. Licini, D. J. Bishop, M. A. Kastner and J. Melngailis, Phys. Rev. Lett. 55, 2987 (1985).CrossRefGoogle Scholar
  21. 19.
    T. Ando, A. B. Fowler and F. Stern, Rev. Mod. Phys., 54, 437 (1982).CrossRefGoogle Scholar
  22. 20.
    W. J. Skocpol, P. M. Mankiewich, R. E. Howard, L. D. Jackel, D. M. Tennant and A. Douglas Stone, Phys. Rev. Lett. 56, 2865 (1986).CrossRefGoogle Scholar
  23. 21.
    A. I. Larkin and D. E. Khmel’nitskii, Zh. Eksp. Teor. Fiz. 91, 1815 (1986).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • S. B. Kaplan
    • 1
  1. 1.IBM Research DivisionT.J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations