Advertisement

Sepsis pp 180-201 | Cite as

Sepsis and Leukocyte Function: Harm and Benefit

  • J. J. Zimmerman
Chapter
  • 33 Downloads

Abstract

Although invading microbes and their associated toxins may initiate sepsis, it is the host’s violent inflammatory response that largely defines the sepsis syndrome [1, 2]. Aberrations in immune function and metabolism may result in multiple organ system failure. Septic shock thus reflects profound cellular dysfunction as a consequence of a variety of dysmetabolic events. Leukocytes representing the infantry of the host defense system appear to play a leading role in various causal phenomena associated with sepsis. A variety of defects in cell-mediated immunity may place the individual in jeopardy for sepsis. However, these same cellular elements orchestrate the inflammation-amplification response characteristic of the host autoinjury septic syndrome. This brief review examines the dual role — harm and benefit — of leukocytes in sepsis.

Keywords

Acquire Immune Deficiency Syndrome Polymorphonuclear Leukocyte Adult Respiratory Distress Syndrome Common Variable Immune Deficiency Leukocyte Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Sheagren JN (1986) The pathogenesis and therapy of the complications of severe sepsis. In: Chernow B, Shoemaker WC (eds) Critical care medicine — state of the art. Society of Critical Care Medicine. Fullerton, CA, pp 465Google Scholar
  2. 2.
    Zimmerman JJ, Dietrich KA (1987) Current perspectives on septic shock. Pediatr Clin North Am 34: 131PubMedGoogle Scholar
  3. 3.
    Rosenthal AS (1980) Regulation of the immune response — role of the macrophage. N Engl J Med 303: 1153PubMedCrossRefGoogle Scholar
  4. 4.
    Meltzer MS, Nacy CA (1987) Cell—cell interaction during inflammation: the role of the macrophage. In: Cerra FB, Shoemaker WC (eds) Critical care medicine — state of the art. Society of Critical Care Medicine. Fullerton, CA, pp 119Google Scholar
  5. 5.
    Unanue ER (1980) Cooperation between mononuclear phagocytes and lymphocytes in immunity. N Engl J Med 303: 977PubMedCrossRefGoogle Scholar
  6. 6.
    Berkower I, Streicher HZ (1987) The mononuclear phagocyte as antigen-presenting cell. Pediatr Ann 16: 395PubMedGoogle Scholar
  7. 7.
    Schreiber RD, Celada A (1984) Molecular characterization of gamma interferon as a macrophage activating factor. Lymphokines 11: 87Google Scholar
  8. 8.
    Johnston RB (1978) Oxygen metabolism and the microbicidal activity of macrophages. Fed Proc 37: 2759PubMedGoogle Scholar
  9. 9.
    Nathan CF, Murray HW, Cohn ZA (1980) The macrophage as an effector cell. N Engl J Med 303: 622PubMedCrossRefGoogle Scholar
  10. 10.
    Dinarello CA (1984) Interleukin 1 and the pathogenesis of the acute-phase response. N Engl J Med 311: 1413PubMedCrossRefGoogle Scholar
  11. 11.
    Kampfschmidt RF (1984) The numerous postulated biological manifestations of interleukin-1. J Leukocyte Biol 36: 341Google Scholar
  12. 12.
    Dinarello CA, Mier JW (1987) Lymphokines. N Engl J Med 317: 940PubMedCrossRefGoogle Scholar
  13. 13.
    Hayward AR (1987) T-lymphocytes: an update. Pediatr Ann 16: 391PubMedGoogle Scholar
  14. 14.
    Moretta L, Webb SR, Grossi CE, et al. (1977) Functional analysis of two human T-cell subpopulations: help and suppression of B-cell responses by T-cells bearing receptors for IgM or IgG. J Exp Med 146: 184PubMedCrossRefGoogle Scholar
  15. 15.
    Acuto O, Reinherz EZ (1985) The human T-cell receptor. Structure and function. N Engl J Med 312: 1100PubMedCrossRefGoogle Scholar
  16. 16.
    Reinherz EL, Haynes BF, Nadler LM, et al. (eds) (1986) Leukocyte typing II, human T lymphocytes, vol 1:3. Springer, New YorkGoogle Scholar
  17. 17.
    Reinherz EL, Schlossman SF (1980) Regulation of the immune response inducer and suppressor T-lymphocyte subsets in human beings. N Engl J Med 303: 370PubMedCrossRefGoogle Scholar
  18. 18.
    Boxer GJ, Curnutte JT, Boxer LA (1985) Polymorphonuclear leukocyte function. Hosp Pract March: 69Google Scholar
  19. 19.
    Weissman G, Smolen JE, Korchak M (1980) Release of inflammatory mediators from stimulated neutrophils. N Engl J Med 303: 27CrossRefGoogle Scholar
  20. 20.
    Zimmerman JJ (1986) Polymorphonuclear leukocytes — agents of host defense and autoinjury. In: Chernow B, Shoemaker WC (eds) Critical care medicine — state of the art. Society of Critical Care Medicine. Fullerton, CA, pp 281Google Scholar
  21. 21.
    Babior BM (1984) The respiratory burst of phagocytes. J Clin Invest 73: 599PubMedCrossRefGoogle Scholar
  22. 22.
    Goldstein IM, Malmsten CL, Kindahl H, et al. (1978) Thromboxane generation by human peripheral blood polymorphonuclear leukocytes. J Exp Med 148: 787PubMedCrossRefGoogle Scholar
  23. 23.
    Dahlens, Bjork J, Hedqvist P (1981) Leukotrienes promote plasma leakage and leukocyte adhesion in postcapillary venules: In vivo effects with relevance to the acute inflammatory response. Proc Natl Acad Sci USA 78: 3887CrossRefGoogle Scholar
  24. 24.
    Goetzel EJ (1983) Leukocyte recognition and metabolism of leukotrienes. Fed Proc 42: 3128Google Scholar
  25. 25.
    Bremm KD, König W, Spur B, et al. (1984) Generation of slow-reacting substance (leukotrienes) by endotoxin and lipid A from human polymorphonuclear granulocytes. Immunology 59: 299Google Scholar
  26. 26.
    Lotner GZ, Lynch JM, Betz SJ, et al. (1980) Human neutrophil-derived platelet activating factor. J Immunology 124: 676Google Scholar
  27. 27.
    Crespo MS, Inarrea P, Nieto ML, et al. (1986) Evidence of a role for PAF-acether in the pathophysiology of the shock state. Pharmacol Res Commun 18: 181CrossRefGoogle Scholar
  28. 28.
    O’Flaherty JT, Surles JR, Redman J, et al. (1986) Binding and metabolism of platelet-activating factor by human neutrophils. J Clin Invest 78: 381PubMedCrossRefGoogle Scholar
  29. 29.
    Hayakawa M, Sugiyama S, Takamura T, et al. (1986) Neutrophils biosynthesize leukotoxin, 9,10-epoxy-12-octadecenoate. Biochem Biophys Res Commun 137: 424PubMedCrossRefGoogle Scholar
  30. 30.
    Harlan JM (1985) Leukocyte-endothelial interactions. Blood 65: 513PubMedGoogle Scholar
  31. 31.
    Ford-Hutchinson AW, Bray MA, Doig MN, et al. (1980) Leukotriene B4, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature 286: 264PubMedCrossRefGoogle Scholar
  32. 32.
    Martin TR, Altman LC, Albert RK, et al. (1984) Leukotriene B4 production by the human alveolar macrophage: a potential mechanism for amplifying inflammation in the lung. Am Rev Respir Dis 129: 106PubMedGoogle Scholar
  33. 33.
    Spitznagel JK, Shafer WM (1985) Neutrophil killing of bacteria by oxygen independent mechanisms: a historical summary. Rev Infect Dis 7: 398PubMedCrossRefGoogle Scholar
  34. 34.
    Spitznagel JK (1984) Nonoxidative antimicrobial reactions of leukocytes. Contemp Top Immunobiol 14: 283PubMedGoogle Scholar
  35. 35.
    Barrett AJ (1981) Leukocyte elastase. Methods Enzymol 80: 581PubMedCrossRefGoogle Scholar
  36. 36.
    Janoff A (1985) Elastase in tissue injury. Ann Rev Med 36: 207PubMedCrossRefGoogle Scholar
  37. 37.
    Munford RS, Hall CL (1986) Detoxification of bacterial lipopolysaccharides (endotoxins) by a human neutrophil enzyme. Science 234: 203PubMedCrossRefGoogle Scholar
  38. 38.
    Babior BM (1984) Oxidants from phagocytes: agents of defense and destruction. Blood 64: 959PubMedGoogle Scholar
  39. 39.
    Rossi F (1986) The O2- -forming NADPH oxidase of the phagocytes: nature, mechanisms of activation and function. Biochim Biophys Acta 853: 65PubMedCrossRefGoogle Scholar
  40. 40.
    Salin ML, McCord JM (1974) Superoxide dismutases in polymorphonuclear leukocytes. J Clin Invest 54: 1005PubMedCrossRefGoogle Scholar
  41. 41.
    Andrews PC, Krinsky NI (1986) Human myeloperoxidase and hemi-myeloperoxidase. Methods Enzymol 132: 369PubMedCrossRefGoogle Scholar
  42. 42.
    Bernier GM (1980) Immunodeficient and immunosuppressed patients. In: Shoemaker WC, Thompson WL (eds) Critical care medicine — state of the art, chap K. Society of Critical Care Medicine, Fullerton, CAGoogle Scholar
  43. 43.
    Rosen FS, Cooper MD, Wedgwood RJP (1984) The primary immunodeficiences. N Engl J Med 311: 235, 300PubMedCrossRefGoogle Scholar
  44. 44.
    Hassett JM (1987) Humoral immunodeficiency: a review. Pediatr Ann 16: 404PubMedGoogle Scholar
  45. 45.
    Buckley RH (1987) Advances in the correction of immunodeficiency by bone marrow transplantation. Pediatr Ann 16: 412PubMedGoogle Scholar
  46. 46.
    Boxer GJ, Curnutte JT, Boxer LA (1985) Disorders of polymorphonuclear leukocyte function. Hosp Pract April: 129Google Scholar
  47. 47.
    Quie PG (1986) Phagocytic cell dysfunction. J Allergy Clin Immunol 77: 387PubMedCrossRefGoogle Scholar
  48. 48.
    Gallin JI (1985) Leukocyte adherence-related glycoproteins LFA-1, Mo 1, and p 150,95: a new group of monoclonal antibodies, a new disease, and a possible opportunity to undérstand the molecular basis of leukocyte adherence. J Infect Dis 152: 661PubMedCrossRefGoogle Scholar
  49. 49.
    Malech HL, Gallin JI (1987) Neutrophils in human diseases. N Engl J Med 317: 687PubMedCrossRefGoogle Scholar
  50. 50.
    Angello V (1987) Complement deficiency states. Medicine 57: 1Google Scholar
  51. 51.
    Kantor FS (1975) Infection, anergy and cell-mediated immunity. N Engl Med 292: 629CrossRefGoogle Scholar
  52. 52.
    Seligmann M, Chess L, Fahey JL, et al. (1984) AIDS — an immunologic reevaluation. N Engl J Med 311: 1286PubMedCrossRefGoogle Scholar
  53. 53.
    Bowen DL, Lane HC, Fauci AS (1985) Immunopathogenesis of the acquired immunodeficiency syndrome. Ann Intern Med 103: 704PubMedCrossRefGoogle Scholar
  54. 54.
    Layon J, Warzynski M, Idris A (1986) Acquired immunodeficiency syndrome in the United States: a selective review. Crit Care Med 14: 819PubMedCrossRefGoogle Scholar
  55. 55.
    Ho DD, Pomerantz RI, Kaplan JC (1987) Pathogenesis of infection with human immunodeficiency virus. N Engl J Med 317: 278PubMedCrossRefGoogle Scholar
  56. 56.
    Menitove JE, Abrams RA (1987) Granulocyte transfusions in neutropenic patients. Oncol Hematol 7: 89Google Scholar
  57. 57.
    Kehrl JH, Fauci AS (1983) The clinical uses of glucocorticoids. Ann Allergy 50: 2PubMedGoogle Scholar
  58. 58.
    Kahan BD (1981) Nutrition and host defense mechanisms. Surg Clin North Am 61: 557PubMedGoogle Scholar
  59. 59.
    Belghiti J, Goldfarb G, Fekete F, et al. (1983) Impaired in vitro bactericidal power of polymorphonuclear leukocytes in patients with protein calorie malnutrition. Surg Gynecol Obstetr 156: 489Google Scholar
  60. 60.
    Ninnemann JL (1982) Immunologic defenses against infection: alterations following thermal injuries. J Burn Care Rehabil 6: 355CrossRefGoogle Scholar
  61. 61.
    Munster AM (1984) Immunologic response to trauma and burns. An overview. Am J Med 76: 142PubMedCrossRefGoogle Scholar
  62. 62.
    Peterson VM, Robinson WA, Wallner SF, et al. (1985) Granulocyte stem cells are decreased in humans with fatal burns. J Trauma 25: 413PubMedCrossRefGoogle Scholar
  63. 63.
    Davis JM, Dineen P, Gallin JI (1980) Neutrophil degranulation and abnormal chemotaxis after thermal injury. J Immunol 124: 1467PubMedGoogle Scholar
  64. 64.
    Heck ER, Edgar MA, Masters BS, et al. (1979) The role of NADH-NADPH oxidase activity in the leukocyte function of burn patients. J Trauma 19: 49PubMedCrossRefGoogle Scholar
  65. 65.
    O’Mahony JB, Wood JJ, Rodrick ML, et al. (1985) Changes in T lymphocytes subsets following injury. Assessment by flow cytometry and relationship to sepsis. Ann Surg 202: 580PubMedCrossRefGoogle Scholar
  66. 66.
    Miller CL, Baker CC (1979) Changes in lymphocyte activity after thermal injury. The role of suppressor cells. J Clin Invest 63: 202PubMedCrossRefGoogle Scholar
  67. 67.
    Deitch EA, Landry KN, McDonald JC (1985) Postburn impaired cell-mediated lymphocytes may not be due to lazy lymphocytes but to overwork. Ann Surg 201: 793PubMedCrossRefGoogle Scholar
  68. 68.
    Lundy J, Ford CM (1983) Surgery, trauma, and immunosuppression. Ann Surg 197: 434PubMedCrossRefGoogle Scholar
  69. 69.
    Baker CC, Oppenheimer L, Stephans B, et al. (1980) Epidemiology of trauma deaths. Am J Surg 140: 144PubMedCrossRefGoogle Scholar
  70. 70.
    Keane RM, Birmingham W, Shatney CM, et al. (1983) Prediction of sepsis in the multi-traumatic patient by assays of lymphocyte responsiveness. Surg Gynecol Obstet 156: 163PubMedGoogle Scholar
  71. 71.
    Levy EM, Alharbi SA, Grindlinger G, et al. (1984) Changes in mitogen responsiveness lymphocyte subsets after traumatic injury: relation to development of sepsis. Clin Immunol Immunopathol 32: 224PubMedCrossRefGoogle Scholar
  72. 72.
    O’Mahony JB, Palder SB, Wood JJ, et al. (1984) Depression of cellular immunity after multiple trauma in the absence of sepsis. J Trauma 24: 869PubMedCrossRefGoogle Scholar
  73. 73.
    Rodrick ML, Wood JJ, O’Mahony JB, et al. (1986) Mechanism of immunosuppression associated with severe nonthermal traumatic injuries in man: production of interleukin 1 and 2. J Clin Immunol 6: 310PubMedCrossRefGoogle Scholar
  74. 74.
    Abraham E, Chang Y (1986) Cellular and humoral bases of hemorrhage-induced depression of lymphocyte function. Crit Care Med 14: 81PubMedCrossRefGoogle Scholar
  75. 75.
    Lanser ME, Mao P, Brown G, et al. (1985) Serum-mediated depression of neutrophil chemiluminescence following blunt trauma. Ann Surg 202: 111PubMedCrossRefGoogle Scholar
  76. 76.
    Lanser ME, Brown GE, Mora R, et al. (1986) Trauma serum suppresses superoxide production by normal neutrophils. Arch Surg 121: 157PubMedCrossRefGoogle Scholar
  77. 77.
    Maderazo EG, Woronick CL, Albano SD, et al. (1986) Inappropriate activation, deactivation, and probable autooxidative damage as a mechanism of neutrophil locomotory defect in trauma. J Infect Dis 154: 471PubMedCrossRefGoogle Scholar
  78. 78.
    Solomkin JS, Cotta LA, Ogle JD, et al. (1984) Complement-induced expression of cryptic receptors on the neutrophil surface: a mechanism for the regulation of acute inflammation in trauma. Surgery 96: 336PubMedGoogle Scholar
  79. 79.
    Nishijima MK, Takezawa J, Hosotsubo KK, et al. (1986) Serial changes in cellular immunity of septic patients with multiple organ-system failure. Crit Care Med 14: 87PubMedCrossRefGoogle Scholar
  80. 80.
    Luser A, Graf H, Schwarz HP, et al. (1986) Decreased serum interleukin-1 activity and monocyte interleukin-1 production in patients with fatal sepsis. Crit Care Med 14: 458CrossRefGoogle Scholar
  81. 81.
    Wilson ME (1985) Effects of bacterial endotoxins on neutrophil function. Rev Infect Dis 7: 404PubMedCrossRefGoogle Scholar
  82. 82.
    MacGregor RR (1977) Granulocyte adherence changes induced by hemodialysis, endotoxin, epinephrine, and glucocortoids. Ann Intern Med 86: 35CrossRefGoogle Scholar
  83. 83.
    Thorne KJI, Oliver RC, Lackie J (1977) Changes in the surface properties of rabbit polymorphonuclear leukocytes, induced by bacteria and bacterial endotoxin. J Cell Sci 27: 213PubMedGoogle Scholar
  84. 84.
    Goodman ML, Way BA, Irwin JW (1979) The inflammatory response to endotoxin. J Pathol 128: 7PubMedCrossRefGoogle Scholar
  85. 85.
    Dahinden C, Galanos C, Fehr J (1983) Granulocyte activation by endotoxin. I. Correlation between adherence and other granulocyte functions, and the role of endotoxin structure on biologic activity. J Immunol 130: 857, 863PubMedGoogle Scholar
  86. 86.
    Snyderman R, Gewurz H, Mergenhagen SE (1968) Interactions of the complement system with endotoxic lipopolysaccharide: generation of a factor chemotactic for polymorphonuclear leukocytes. J Exp Med 128: 259PubMedCrossRefGoogle Scholar
  87. 87.
    Moore FD, Moss NA, Revhaug A, et al. (1987) A single dose of endotoxin activates neutrophils without activating complement. Surgery 102: 200PubMedGoogle Scholar
  88. 88.
    Goldman DW, Enkel H, Gifford LA, et al. (1986) Lipopolysaccharide modulates receptors for leukotriene B4, C5a, and formyl-methionyl-leucyl-phenylalanine on rabbit polymorphonuclear leukocytes. J Immunol 137: 1971PubMedGoogle Scholar
  89. 89.
    Craddock PR, Hammerschmidt D, White JG, et al. (1977) Complement (C5a)-induced granulocyte aggregation in vitro: a possible mechanism of complement mediated leukostasis and leukopenia. J Clin Invest 60: 260PubMedCrossRefGoogle Scholar
  90. 90.
    Goldstein IM, Brai M, Oster AG, et al. (1973) Lysosomal enzyme release from human leukocytes: mediation by the alternative pathway of complement activation. J Immunol 111: 33PubMedGoogle Scholar
  91. 91.
    Strauss RG, Mauer AM, Asbrock, et al. (1975) Stimulation of neutrophil oxidative metabolism by the alternative pathway of complement activation: a mechanism for the spontaneous NBT test. Blood 45: 843PubMedGoogle Scholar
  92. 92.
    Anderson DC, Pickering LK, Feigin FD (1974) Leukocyte function in normal and infected neonates. J Pediatr 85: 420PubMedCrossRefGoogle Scholar
  93. 93.
    Shigeoka AO, Santos JI, Hill HR (1979) Functional analysis of neutrophil granulocytes from healthy, infected, and stressed neonates. J Pediatr 95: 454PubMedCrossRefGoogle Scholar
  94. 94.
    Christensen RD (1987) Morphology and concentration of circulating neutrophils in neonates with sepsis. Pediatr Infect Dis J 6: 429PubMedCrossRefGoogle Scholar
  95. 95.
    Zimmerman JJ, Shelhamer JH, Parrillo JE (1985) Quantitative analysis of polymorphonuclear leukocyte superoxide anion generating in critically ill children. Crit Care Med 13: 143PubMedCrossRefGoogle Scholar
  96. 96.
    Duignan JP, Collins PB, Johnson AH, et al. (1986) The association of impaired neutrophil chemotaxis with post operative surgical sepsis. Br J Surg 73: 238PubMedCrossRefGoogle Scholar
  97. 97.
    Regel G, Nerlich ML, Dwenger A, et al. (1987) Phagocytic function of polymorphonuclear leukocytes and the RES in endotoxemia. J Surg Res 42: 74PubMedCrossRefGoogle Scholar
  98. 98.
    Solomkin JS, Brodt JK, Antrum RM (1985) Suppressed neutrophil oxidative activity in sepsis: a receptor-mediated regulatory response. J Surg Res 39: 300PubMedCrossRefGoogle Scholar
  99. 99.
    Solomkin JS, Cotta LA, Brodt JK, et al. (1985) Regulation of neutrophil superoxide production in sepsis. Arch Surg 120: 93PubMedCrossRefGoogle Scholar
  100. 100.
    Solomkin JS, Jenkins MK, Nelson RD, et al. (1981) Neutrophil dysfunction is sepsis II. Evidence for the role of complement activation products in cellular deactivation. Surgery 90: 319PubMedGoogle Scholar
  101. 101.
    Martin CI, Bongrand P, Saux P, et al. (1987) Abnormalities of some phagocyte membrane receptors during nosicomial infections. Crit Care Med 15: 467PubMedCrossRefGoogle Scholar
  102. 102.
    Solomkin JS, Cotta LA, Brodt JK, et al. (1984) Neutrophil dysfunction is sepsis. Degranulation as a mechanism for non-specific deactivation. J Surg Res 36: 407PubMedCrossRefGoogle Scholar
  103. 103.
    Solomkin JS, Brodt JK, Zemlan FP (1986) Degranulatin inhibition. A potential mechanism for control of neutrophil superoxide production in sepsis. Arch Surg 121: 77PubMedCrossRefGoogle Scholar
  104. 104.
    Zimmerman JJ, Millard JR, Farin-Rusk C (1987) Septic plasma suppresses superoxide anion synthesis by normal homologous polymorphonuclear leukocytes. Crit Care Med 15: 376CrossRefGoogle Scholar
  105. 105.
    Babior BM (1984) Oxidants from phagocytes: agents of defense and destruction. Blood 64: 959PubMedGoogle Scholar
  106. 106.
    Jacob HS, Craddock PR, Hammerschmidt DE, et al. (1980) Complement-induced granulocyte aggregation — an unsuspected mechanism of disease. N Engl J Med 302: 789PubMedCrossRefGoogle Scholar
  107. 107.
    Karakusis PH (1986) Considerations in the therapy of septic shock. Med Clin North Am 70: 933PubMedGoogle Scholar
  108. 108.
    Fein AM, Lippmann M, Holtzman H, et al. (1983) The risk factors, incidence and prognosis of ARDS following septicemia. Chest 83: 40PubMedCrossRefGoogle Scholar
  109. 109.
    Brigham KL, Meyrick B (1986) Endotoxin and lung injury. Am Rev Respir Dis 133: 913PubMedGoogle Scholar
  110. 110.
    Maunder RJ, Hackman RC, Riff E, et al. (1986) Occurrence of the adult respiratory distress syndrome in neutropenic patients. Am Rev Respir Dis 133: 313PubMedGoogle Scholar
  111. 111.
    Ognibene FP, Martin SE, Parker MM, et al. (1986) Adult respiratory destress syndrome in patients with severe neutropenia. N Engl J Med 315: 547PubMedCrossRefGoogle Scholar
  112. 112.
    Weiland JE, Davis WB, Holter JF, et al. (1986) Lung neutrophils in the adult respiratory distress syndrome. Clinical and pathophysiologic significance. Am Rev Respir Dis 133: 218PubMedGoogle Scholar
  113. 113.
    Powe JE, Short A, Sibbald WJ, et al. (1982) Pulmonary accumulation of polymorphonuclear leukocytes in the adult respiratory distress syndrome. Crit Care Med 10: 712PubMedCrossRefGoogle Scholar
  114. 114.
    Rinaldo JE, Dauber GH, Christman J, et al. (1984) Neutrophil alveolitis following endotoxemia. Am Rev Resp Dis 130: 1065PubMedGoogle Scholar
  115. 115.
    Haslett C, Worthen GS, Giclas PC, et al. (1987) The pulmonary vascular sequestration of neutrophils in endotoxemia is initiated by an effect of endotoxin on the neutrophil in the rabbit. Am Rev Resp Des 136: 9, 19Google Scholar
  116. 116.
    Lee CT, Fein AM, Lippman M, et al. (1981) Elastolytic activity in pulmonary lavage fluid from patients with adult respiratory distress syndrome. N Engl J Med 304: 192PubMedCrossRefGoogle Scholar
  117. 117.
    McGuire WW, Spragg RG, Cohen AB (1982) Studies on the pathogenesis of the adult respiratory distress syndrome. J Clin Invest 69: 543PubMedCrossRefGoogle Scholar
  118. 118.
    Jochum M, Duswald KH, Neumann S, et al. (1984) Proteinases and their inhibitors in septicemia — basic concepts and clinical implications. Adv Exp Med Biol 167: 391PubMedCrossRefGoogle Scholar
  119. 119.
    Zaslow MC, Clark RA, Stone PJ, et al. (1983) Human neutrophil elastase does not bind to alpha-1-protease inhibitor that has been exposed to activated human neutrophils. Am Rev Resp Dis 128: 434PubMedGoogle Scholar
  120. 120.
    Solomkin JS, Cotta LA, Satoh RS, et al. (1985) Complement activation and clearance in acute illness and injury: Evidence for C5a as a cell-directed mediator of the adult respiratory distress syndrome in man. Surgery 97: 668PubMedGoogle Scholar
  121. 121.
    Parsons PE, Fowler AA, Hyers TM, et al. (1985) Chemotactic activity in bronchoalveolar lavage fluid from patients with adult respiratory distress syndrome. Am Rev Resp Dis 132: 490PubMedGoogle Scholar
  122. 122.
    Rinaldo JE, Borovetz H (1985) Deterioration of oxygenation and abnormal lung micro-vascular permeability during resolution of leukopenia in patients with diffuse lung injury. Am Rev Respir Dis 131: 579PubMedGoogle Scholar
  123. 123.
    Zimmerman GA, Renzetti AD, Hill H (1983) Functional and metabolic activity of granulocytes from patients with adult respiratory distress syndrome. Evidence for activated neutrophils in the pulmonary circulation. Am Rev Respir Dis 127: 290PubMedGoogle Scholar
  124. 124.
    Hällgren R, Borg T, Venge P, et al. (1984) Signs of neutrophil and eosinophil activation in adult respiratory distress syndrome. Crit Care Med 12: 14PubMedCrossRefGoogle Scholar
  125. 125.
    Borg T, Gerdin B, Hällgren R, et al. (1985) The role of polymorphonuclear leukocytes in the pulmonary dysfunction induced by complement activation. Acta Anaesthesiol Scand 29: 231PubMedCrossRefGoogle Scholar
  126. 126.
    Ernst JD, Hartiala KT, Goldstein IM, et al. (1984) Complement ( C5)-derived chemotactic activity accounts for accumulation of polymorphonuclear leukocytes in cerebrospinal fluid of rabbits with pneumococcal meningitis. Infect Immun 46: 81PubMedGoogle Scholar
  127. 127.
    Rorke LB, Pitts FW (1963) Purulent meningitis: the pathologic basis of clinical manifestations. Clin Pediatr 2: 64CrossRefGoogle Scholar
  128. 128.
    Scheld WM (1985) Pathogenesis and pathophysiology of pneumococcal meningitis. In: Sande MA, Smith AL, Root RK (eds) Bacterial meningitis, chap 4. Churchill Livingstone, New York, pp 37Google Scholar
  129. 129.
    Simberkoff MS, Moldover NH, Rahal JJ (1980) Absence of detectable bactericidal and opsonic activities in normal and infected cerebrospinal fluids. A regional host deficiency. J Lab Clin Med 95: 362PubMedGoogle Scholar
  130. 130.
    Johnson V, Ohlsson K, Olsson I (1976) Effects of granulocytic neutral proteases on complement components. Scand J Immunol 5: 421PubMedCrossRefGoogle Scholar
  131. 131.
    Smith-Erichsen N, Aasen AO, Amundsen E (1984) Changes in components of the plasma protease systems related to course and outcome of surgical sepsis. Adv Exp Med Biol 167: 455PubMedCrossRefGoogle Scholar
  132. 132.
    Canavan D, Robinson F, Turkington P (1986) Leukocyte elastase activity in meningococcal septicaemia associated coagulopathy. J Clin Pathol 39: 1304PubMedCrossRefGoogle Scholar
  133. 133.
    Ellman H (1984) Capillary permeability in septic patients. Crit Care Med 12: 629PubMedCrossRefGoogle Scholar
  134. 134.
    Fleck A, Hawker F, Wallace PI, et al. (1985) Increased vascular permeability: a major cause of hypoalbuminemia in disease and injury. Lancet 888: 781CrossRefGoogle Scholar
  135. 135.
    Jeppsson B, Freund HR, Gimmon Z, et al. (1981) Blood-brain barrier derangement in sepsis: cause of septic encephalopathy? Am J Surg 141: 136PubMedCrossRefGoogle Scholar
  136. 136.
    Mosesson MW, Amrani DL (1980) The structure and biologic activities of plasma fibronectin. Blood 56: 145PubMedGoogle Scholar
  137. 137.
    Mosher DF (1984) Physiology of fibronectin. Am Rev Med 35: 561CrossRefGoogle Scholar
  138. 138.
    Saba TM (1986) Organ failure with sepsis after trauma or burn: support of the reticuloendothelial host defense system. In: Sibbald WJ, Spring CL (eds) Perspectives on sepsis and septic shock, chap 5. Society of Critical Care Medicine. Fullerton, CA, pp 77Google Scholar
  139. 139.
    Gerdes JS, Yoder MC, Douglas SD, et al. (1983) Decreased plasma fibronectin in neonatal sepsis. Pediatrics 72: 877PubMedGoogle Scholar
  140. 140.
    McDonald JA, Baum BJ, Rosenberg DM, et al. (1979) Destruction of a major extravascular adhesive glycoprotein (fibronectin) of human fibroblasts by neutral proteases from polymorphonuclear leukocyte granules. Lab Invest 40: 350PubMedGoogle Scholar
  141. 141.
    Harlan J, Killen P, Harker L, et al. (1981) Neutrophil-mediated endothelial injury in vitro: mechanisms of cell detachment. J Clin Invest 68: 1394PubMedCrossRefGoogle Scholar
  142. 142.
    Saba TM (1981) Disturbances in plasma and cell surface fibronectin: relationship to altered vascular permeability and host defense. J Trauma 21: 679CrossRefGoogle Scholar
  143. 143.
    Vercellotti GM, McCarthy J, Furcht LT, et al. (1983) Inflammed fibronectin: an altered fibronectin enhances neutrophil adhesion. Blood 62: 1063PubMedGoogle Scholar
  144. 144.
    Beutler B, Cerami A (1987) Cachectin: more than a tumor necrosis factor. N Engl J Med 316: 379PubMedCrossRefGoogle Scholar
  145. 145.
    Tracey KJ, Beutler B, Lowry SF, et al. (1986) Shock and tissue injury induced by recombinant human cachectin. Science 234: 470PubMedCrossRefGoogle Scholar
  146. 146.
    Gamble JR, Harlan JM, Klebanoff SJ, et al. (1985) Stimulation of the adherence of neutrophils to umbilical vein endothelium by human recombinant tumor necrosis factor. Proc Natl Acad Sci USA 82: 8667PubMedCrossRefGoogle Scholar
  147. 147.
    Shalaby MR, Aggarwal BB, Rinderknecht E, et al. (1985) Activation of human polymorphonuclear neutrophil functions by interferon-gamma and tumor necrosis factors. J Immunol 135: 2069PubMedGoogle Scholar
  148. 148.
    Buetler B, Milsark IW, Cerami AC (1985) Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science 229: 869CrossRefGoogle Scholar
  149. 149.
    Baracos V, Rodemann HP, Dinarello CA, et al. (1983) Stimulation of muscle protein degradation and prostaglandin E2 release by leukocyte pyrogen (interleukin-1). N Engl J Med 308: 553PubMedCrossRefGoogle Scholar
  150. 150.
    Clowes GHA, George BC, Villee CA, et al. (1983) Muscle proteolysis induced by a circulating peptide in patients with sepsis or trauma. N Engl J Med 308: 545PubMedCrossRefGoogle Scholar
  151. 151.
    Loda M, Clowes GHA, Dinarello CA, et al. (1984) Induction of hepatic protein synthesis by a peptide in blood plasma of patients with sepsis and trauma. Surgery 96: 204PubMedGoogle Scholar
  152. 152.
    Smith RJ, Bowman BJ, Speziale SC (1986) Interleukin-1 stimulates granule exocytosis from human neutrophils. Int J Immunopharmacol 8: 33PubMedCrossRefGoogle Scholar
  153. 153.
    Movat HZ, Cybulsky MI, Colditz IG, et al. (1987) Acute inflammation in gram-negative infection: endotoxin, interleukin-1, tumor necrosis factor, and neutrophils. Fed Proc 46: 97PubMedGoogle Scholar
  154. 154.
    Ziegler EJ, McCutchan JA, Fierer J, et al. (1982) Treatment of gram-negative bacteremia and shock with human antiserum to a mutant Escherichia coli. N Engl J Med 307: 1225CrossRefGoogle Scholar
  155. 155.
    Hammerschmidt DE (1981) The stimulated granulocyte as an effector of immune injury (or: the fickle phagocyte, friend or foe?). J Miss State Med Assoc 22: 280PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • J. J. Zimmerman

There are no affiliations available

Personalised recommendations