RNA Virus Populations as Quasispecies

  • J. J. Holland
  • J. C. De La Torre
  • D. A. Steinhauer
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 176)


This chapter discusses the high mutation frequencies and rapid evolution potential of RNA viruses. The concepts discussed are applicable to all “ordinary” RNA viruses (riboviruses), viroids and satellite RNAs; to retroviruses; and to viruses (such as the hepadnaviruses) with DNA genomes which replicate via RNA transcripts. Because DNA virus polymerases can have proofreading (Kornberg 1974), their mutation frequencies can be much lower than those of RNA viruses. For example, the mutation rate of bacteriophage T4 approximates 10−8 per base pair per replication (Drake 1969). However, some DNA viruses may avoid high-fidelity replication mechanisms (Drake et al. 1969; Hall et al. 1984) to gain the evolutionary advantages of high mutation frequencies (Smith and Inglis 1987).


Human Immunodeficiency Virus Type Mutation Frequency Newcastle Disease Virus Vesicular Stomatitis Virus Sindbis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahmed R, Salmi A, Butler LD, Chiller JM, Oldstone MBA (1984) Selection of genetic variants of LCMV in spleens of persistently infected mice: role in suppression of cytotoxic T lymphocyte response and viral persistence. J Exp Med 160: 521–540PubMedCrossRefGoogle Scholar
  2. Balfe P, Simmonds P, Ludlam CA, Bishop JO, Leigh Brown AJ (1990) Concurrent evolution of human immunodeficiency virus type 1 in patients infected from the same source: rate of sequence change and low frequency of inactivating mutations. J Virol 64: 6221–6233PubMedGoogle Scholar
  3. Bass BL, Weintraub H, Cattaneo R, Billeter MA (1989) Biased hypermutation of viral genomes could be due to unwinding/modification of double stranded RNA. Cell 56: 331PubMedCrossRefGoogle Scholar
  4. Batschelet E, Domingo E, Weissman C (1976) The proportion of revertant and mutant phage in a growing population as a function of mutation and growth rate. Gene 1: 27–32PubMedCrossRefGoogle Scholar
  5. Bebenek K, Kunkel TA (1990) Frameshift errors initiated by nucleotide misincorporation. Proc Natl Acad Sci USA 87: 4946–4950PubMedCrossRefGoogle Scholar
  6. Bilsel PA, Nichol ST (1990) Polymerase errors accumulating during natural evolution of the glycoprotein gene of vesicular stomatitis virus Indiana serotype isolates. J Virol 64: 4873–4883PubMedGoogle Scholar
  7. Blank A, Gallant JA, Burgess RR, Loeb LA (1986) A RNA polymerase mutant with reduced accuracy of chain elongation. Biochemistry 25: 5920–5928PubMedCrossRefGoogle Scholar
  8. Boege U, Kobasa D, Onodera S, Parks GD, Palmenberg AC, Scraba DG (1991) Characterization of mengo virus neutralization epitopes. Virology 181: 1–13PubMedCrossRefGoogle Scholar
  9. Burns DPW, Desrosiers RC (1991) Selection of genetic variants of simian immunodeficiency virus in persistently infected rhesus monkeys. J Virol 65: 1843–1854PubMedGoogle Scholar
  10. Cattaneo R, Schmid A, Eschle D, Baczko K, ter Meulen V, Billeter MA (1988) Biased hypermutation and other genetic changes in defective measles viruses in human brain infections. Cell 55: 255–265PubMedCrossRefGoogle Scholar
  11. Chao L (1990) Fitness of RNA virus decreased by Muller’s ratchet. Nature 348: 454–455PubMedCrossRefGoogle Scholar
  12. Coffin JM (1986) Genetic variation in AIDS viruses. Cell 46: 1–4PubMedCrossRefGoogle Scholar
  13. Coffin JM (1990) Genetic variation in retroviruses. In: Kurstak E, Marusyk RG, Murphy FA, van Regenmortel MHV (eds) Applied virology research, vol 2. Plenum, New York, pp 11–33Google Scholar
  14. Cullis PM, Wolfenden R (1981) Affinities of nucleic acid bases for solvent water. Biochemistry 20: 3024–3028PubMedCrossRefGoogle Scholar
  15. Daniels M (1972) Tautomerism of uracil and thymine in aqueous solution; spectroscopic evidence. Proc Natl Acad Sci USA 69: 2488–2491PubMedCrossRefGoogle Scholar
  16. De La Torre JC, Wimmer E, Holland JJ (1990) Very high frequency of reversion to guanidine resistance in clonal pools of guanidine-dependent type I poliovirus. J Virol 64: 664–671PubMedGoogle Scholar
  17. Domingo E (1989) RNA virus evolution and the control of viral disease. Prog Drug Res 33: 93–133PubMedCrossRefGoogle Scholar
  18. Domingo E, Holland JJ (1988) High error rates, population equilibrium and evolution of RNA replication systems. In: Domingo E, Holland JJ, Ahlquist P (eds) RNA genetics, vol 3. CRC, BocaGoogle Scholar
  19. Raton, pp 3–36Google Scholar
  20. Domingo E, Martinez-Salas E, Sobrino F, De la Torre JC, Portela A, Ortin J, Lopéz-Galindez C, PéresBrena P, Villanueva N, Néjera R, VandePol S, Steinhauer D, DePolo N, Holland JJ (1985) The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: biological relevance—a review. Gene 40: 1–8PubMedCrossRefGoogle Scholar
  21. Dougherty JP, Temin HM (1988) Determination of the rate of base-pair substitution and insertion mutations in retrovirus replication. J Virol 62: 2817–2822PubMedGoogle Scholar
  22. Drake JW (1969) Comparative rates of spontaneous mutation. Nature 221: 1132PubMedCrossRefGoogle Scholar
  23. Drake JW, Allen EF, Forsberg SA, Preparata RM, Greening EO (1969) Spontaneous mutation. Nature 221: 1128–1132PubMedCrossRefGoogle Scholar
  24. Dreyfus M, Bensaude O, Dodin G, Dubois JE (1975) Tautomerism in cytosine and 3-methylcytosine. A thermodynamic and kinetic study. J Am Chem Soc 98: 6338–6349Google Scholar
  25. Durbin RK, Stoller V (1986) Sequence analysis of the El gene of a hyperglycosylated, host restricted mutant of Sindbis virus and estimation of mutation rate from frequency of revertants. Virology 154: 135–143PubMedCrossRefGoogle Scholar
  26. Dyson PJ, Knight AM, Fairchild S, Simpson E, Tomonari K (1991) Genes encoding ligands for deletion of Vß11 T cells cosegregate with mammary tumour virus genomes. Nature 349: 531–532PubMedCrossRefGoogle Scholar
  27. Echols H, Lu C, Burgers PMJ (1983) Mutator strains of Escherichia coli, mutD and dnaQ, with defective xonucleolytic editing by DNA polymerase Ill holoenzyme. Proc Natl Acad Sci USA 80: 2189–2192PubMedCrossRefGoogle Scholar
  28. Edelman P, Gallant J (1977) Mistranslation in E coli. Cell 10: 131–137CrossRefGoogle Scholar
  29. Eggers HJ, Tamm I (1965) Coxsackie A9 virus: mutation from drug dependence to drug resistance. Science 148: 97–98PubMedCrossRefGoogle Scholar
  30. Eigen M, Biebricher CK (1988) Sequence space and quasispecies distribution. In: Domingo E, Holland JJ, Ahlquist P (eds) RNA genetics, vol 3. CRC, Boca Raton, pp 211–245Google Scholar
  31. Eigen M, Schuster P (1979) The hypercycle. A principle of natural self-organization. Springer, Berlin Heidelberg New YorkGoogle Scholar
  32. Eigen M, Gardiner W, Schuster P, Winkler-Oswatitsch R (1981) The origin of genetic information. Sci Am 244: 88–188PubMedCrossRefGoogle Scholar
  33. Ellis N, Gallant J (1982) An estimate of the global error frequency in translation. Mol Gen Genet 188: 169–172PubMedCrossRefGoogle Scholar
  34. Enders J, Katz SL, Milovanovic MJ, Holloway A (1960) Studies on an attenuated measles virus vaccine. I. Development and preparation of vaccine: techniques for assay of effects of vaccination. N Engl J Med 263: 153–159PubMedCrossRefGoogle Scholar
  35. Fersht AR, Knill-Jones JW, Tsui W-C (1982) Kinetic basis of spontaneous mutation. J Mol Biol 156: 37–51PubMedCrossRefGoogle Scholar
  36. Fersht AR, Shi J-P, Tsui W-C (1983) Kinetics of base misinsertion by DNA polymerase I of Escherichia coli. J Mol Biol 165: 655–667CrossRefGoogle Scholar
  37. Fields BN, Joklik WK (1969) Isolation and preliminary characterization of temperature sensitive mutants of retrovirus. Virology 37: 335–342PubMedCrossRefGoogle Scholar
  38. Frankel WN, Rudy C, Coffin JM, Huber BT (1991) Linkage of M/s genes to endogenous mammary tumour viruses of inbred mice. Nature 349: 526–528PubMedCrossRefGoogle Scholar
  39. Fujinami RS, Oldstone MBA (1989) Molecular mimicry as a mechanism for virus-induced autoimmunity. Immunol Res 8: 3–15PubMedCrossRefGoogle Scholar
  40. Gebauer F, De La Torre JC, Gomes I, Mateu MG, Barahoma H, Tiraboschi B, Bergmann I, Augé De Mello P, Domingo E (1988) Rapid selection of genetic and antigenic variants of foot-and-mouth disease virus during persistence in cattle. J Virol 62: 2041–2049PubMedGoogle Scholar
  41. Gorman OT, Bean WJ, Kawaoka Y, Webster RG (1990) Evolution of the nucleoprotein gene of influenza A virus. J Virol 64: 1487–1497PubMedGoogle Scholar
  42. Gould SJ, Eldridge N (1977) Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleontology 3: 115–151Google Scholar
  43. Granoff A (1961) Induction of Newcastle disease virus mutants with nitrous acid. Virology 13: 402–408PubMedCrossRefGoogle Scholar
  44. Granoff A (1964) Nature of the Newcastle disease virus population. In: Hanson RP (ed) Newcastle disease virus, an evolving pathogen. University of Wisconsin Press, Madison, pp 107–108Google Scholar
  45. Groenink M, Fouchier RAM, de Goede REY, de Wolf F, Gruters RA, Cuypers HTM, Huisman HG, Tersmette M (1991) Phenotypic heterogeneity in a panel of infectious molecular human immunodeficiency virus type 1 clones derived from a single individual. J Virol 65: 1968–1975Google Scholar
  46. Hahn YS, Strauss EG, Strauss JH (1989a) Mapping of RNA- temperature sensitive mutants of sindbis virus: assignment of complementation groups A, B, and G to nonstructural proteins. J Virol 63: 3142–3150Google Scholar
  47. Hahn CS, Rice CM, Strauss EG, Lenches EM, Strauss JH (1989b) Sindbis virus ts103 has a mutation in glycoprotein E2 that leads to defective assembly of virions. J Virol 63: 3459–3465PubMedGoogle Scholar
  48. Hall JD, Coen DM, Fisher BL, Weisslitz M, Randall S, Almy RE, Gelep TP, Schaffer PA (1984) Generation of genetic diversity in herpes simplex virus: an antimutator phenotype maps to the DNA polymerase locus. Virology 132: 26–37PubMedCrossRefGoogle Scholar
  49. Heinz BA, Rueckert RR, Shepard DA, Dutko FJ, McKinlay MA, Fancher M, Rossmann MG, Badger J, Smith TJ (1989) Genetic and molecular analyses of spontaneous mutants of human rhinovirus 14 that are resistant to an antiviral compounds. J Virol 63: 2476–2485PubMedGoogle Scholar
  50. Holland JJ, Spindler K, Horodyski F, Grabau E, Nichol S, VandePol S (1982) Rapid evolution of RNA genomes. Science 215: 1577–1585PubMedCrossRefGoogle Scholar
  51. Holland JJ, De La Torre JC, Steinhauer DA, Clarke D, Duarte E, Domingo E (1989) Virus mutation frequencies can be greatly underestimated by monoclonal antibody neutralization of virions. J Virol 63: 5030–5036PubMedGoogle Scholar
  52. Holland JJ, Domingo E, De La Torre JC, Steinhauer DA (1990) Mutation frequencies at defined single condon sites in vesicular stomatitis virus can be increased only slightly by chemical mutagenesis. J Virol 64: 3960–3962PubMedGoogle Scholar
  53. Holland JJ, De La Torre JC, Clarke DK, Duarte E (1991) Quantitation of relative fitness and great adaptability of clonal populations of RNA viruses. J Virol (in press)Google Scholar
  54. Hopfield JJ (1974) Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc Natl Acad Sci USA 71: 4135–4139PubMedCrossRefGoogle Scholar
  55. Imazeki F, Ornata M, Ohto M (1990) Heterogeneity and evolution rates of delta virus RNA sequences. J Virol 64: 5594–5599PubMedGoogle Scholar
  56. Ina Y, Gojobori T (1990) Molecular evolution of human T-cell leukemia virus. J Mol Evol 31: 493–499PubMedCrossRefGoogle Scholar
  57. Ishihama A, Mizumoto K, Kawakami K, Kato A, Honda A (1986) Proofreading function associated with the RNA-dependent RNA polymerase from influenza virus. J Biol Chem 261: 10417–10421PubMedGoogle Scholar
  58. Jakubowski H (1990) Proofreading in vivo: editing of homocysteine by methionyl-tRNA synthetase in Escherichia coli. Proc Natl Acad Sci USA 87: 4504–4508PubMedCrossRefGoogle Scholar
  59. Kassavetis GA, Zentner PG, Geiduschek EP (1986) Transcription at bacteriophage T4 variant late promoters: an application of a newly devised promoter-mapping method. J Biol Chem 261: 14256–14265PubMedGoogle Scholar
  60. Kenner GW, Reese CB, Sir Todd AR (1955) The acylation of 3-methylcytosine. J Chem Soc 50C: 855–859CrossRefGoogle Scholar
  61. Kwe OM, Nottay BK, Rico-Hess R, Pollansch MA (1990) Molecular epidemiology of wild poliovirus transmission. In: Kurstak E (ed) Applied virology research, vol 2. Plenum, New York, pp 199–220Google Scholar
  62. Kinnunen L, Huovilainen A, Pöyry T, Hovi T (1990) Rapid molecular evolution of wild type 3 poliovirus during infection in individual hosts. J Gen Virol 71: 317–324PubMedCrossRefGoogle Scholar
  63. Kornberg A (1974) DNA synthesis. Freeman, San Francisco, pp 67–121Google Scholar
  64. Kunkel LO (1947) Variation in phytopathogenic viruses. Annu Rev Microbiol 1: 85–100CrossRefGoogle Scholar
  65. Kunkel TA (1986) Frameshift mutagenesis by eucaryotic DNA polymerases in vitro. J Biol Chem 261: 13581–13587PubMedGoogle Scholar
  66. Kunkel TA, Alexander PS (1986) The base substitution fidelity of eucaryotic DNA polymerases. J Biol Chem 261: 160–166PubMedGoogle Scholar
  67. Kunkel TA, Meyer RR, Loeb LA (1979) Single-strand binding protein enhances fidelity of DNA synthesis in vitro. Proc Natl Acad Sci USA 76: 6331–6335PubMedCrossRefGoogle Scholar
  68. Kurath G, Palukaitis P (1990) Serial passage of infectious transcripts of a cucumber mosaic virus satellite RNA clone results in sequence heterogeneity. Virology 176: 8–15PubMedCrossRefGoogle Scholar
  69. Kwiatkowski JS, Pullman B (1975) Tautomerism and electronic structure of biological pyrimidines. Adv Heterocycl Chem 18: 199–335CrossRefGoogle Scholar
  70. Kyuwa S, Yamaguchi K, Toyoda Y, Fujiwara K (1991) Induction of self-reactive T cells after murine coronavirus infection. J Virol 65: 1789–1795PubMedGoogle Scholar
  71. Lahue RS, Au KG, Modrich P (1989) DNA mismatch correction in a defined system. Science 245: 160–164PubMedCrossRefGoogle Scholar
  72. Lamb RA, Dreyfuss G (1989) RNA structure. Unwinding with a vengeance [news]. Nature 337: 19–20Google Scholar
  73. Lande R (1985) Expected time for random genetic drift of a population between stable phenotypic states. Proc Natl Acad Sci USA 82: 7641–7645PubMedCrossRefGoogle Scholar
  74. Loeb LA, Kunkel TA (1982) Fidelity of DNA synthesis. Annu Rev Biochem 52: 429–457CrossRefGoogle Scholar
  75. Lotfield RB, Vanderjagt D (1972) The frequency of errors in protein biosynthesis. Biochem J 128: 1353–1356Google Scholar
  76. Lohrmann R, Orgel LE (1980) Efficient catalysis of polycytidylic acid-directed oligoguanylate formation by Pb2’. J Mol Biol 142: 555–567PubMedCrossRefGoogle Scholar
  77. Marrack P, Kushnir E, Kappler J (1991) A maternally inherited superantigen encoded by a mammary tumour virus. Nature 349: 524–526PubMedCrossRefGoogle Scholar
  78. Martinez MA, Carillo C, Gonzalez-Candelaz F, Moya A, Domingo E, Sobrino F (1991) Fitness alteration of foot-and-mouth disease virus mutants; measurement of adaptability of viral quasispecies. J Virol 65: 3954–3957PubMedGoogle Scholar
  79. Moses RE, Summers WC (eds) (1988) DNA replication and mutagenesis. American Society for Microbiology, Washington, p 515Google Scholar
  80. Myerhans A, Cheynier R, Albert J, Seth M, Kwok S, Sninsky J, Morfeldt-Manson L, Asjö B, Wain-Hobson S (1989) Temporal fluctuations in HIV quasispecies in vivo are not reflected by sequential HIV isolations. Cell 58: 901–910CrossRefGoogle Scholar
  81. Newman CM, Cohen JE, Kipnis C (1985) New-darwinian evolution implies punctuated equilibria. Nature 315: 400–401CrossRefGoogle Scholar
  82. O’Hara PJ, Nichol ST, Horodyski FM, Holland JJ (1984) Vesicular stomatitis virus defective interfering particles can contain extensive genomic sequence rearrangements and base substitutions. Cell 36: 915–924PubMedCrossRefGoogle Scholar
  83. Pathak VK, Temin HM (1990) Broad spectrum of in vivo forward mutations, hypermutations, and mutational hotspots in a retroviral shuttle vector after a single replication cycle: substitutions, frameshifts, and hypermutations. Proc Natl Acad Sci USA 87: 6019–6023PubMedCrossRefGoogle Scholar
  84. Petruska J, Sowers LC, Goodman MF (1986) Comparison of nucleotide interactions in water, proteins, and vacuum: model for DNA polymerase fidelity. Proc Natl Acad Sci USA 83: 1559–1562PubMedCrossRefGoogle Scholar
  85. Petruska J, Goodman MF, Boosalis MS, Sowers LC, Cheong C, Tinoco I Jr (1988) Comparison between DNA melting thermodynamics and DNA polymerase fidelity. Proc Natl Acad Sci USA 85: 6252–6256PubMedCrossRefGoogle Scholar
  86. Piccirilli JA, Krauch T, Moroney SE, Benner SA (1990) Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet. Nature 343: 33–37PubMedCrossRefGoogle Scholar
  87. Preston BD, Zakour RA, Singer B, Loeb LA (1988) Fidelity of base selection by DNA polymerases. Site-specific incorporation of base analogs. In: Moses RE, Summers WC (eds) DNA replication and mutagenesis. American Society for Microbiology, Washington, pp 196–207Google Scholar
  88. Pringle CR (1970) Genetic characteristics of conditional lethal mutants of vesicular stomatitis virus induced by 5-fluorouracil, 5-azacytidine, and ethyl methanesulfonate. J Virol 5: 559–567PubMedGoogle Scholar
  89. Preston BD, Zakour RA, Singer B, Loeb LA (1988) Fidelity of base selection by DNA polymerases. Site-specific incorporation of base analogs. In: Moses RE, Summers WC (eds) DNA replication and mutagenesis. American Society for Microbiology, Washington, pp 196–207Google Scholar
  90. Radman M, Wagner R (1986) Mismatch repair in Escherichia coli. Annu Rev Genet 20: 523–538PubMedCrossRefGoogle Scholar
  91. Rodriguez-Cerezo E, Moya A, Garcia-Arenal F (1989) Variability and evolution of the plant RNA virus pepper mild mottle virus. J Virol 63: 2198–2203PubMedGoogle Scholar
  92. Rosenberger RF, Hilton J (1983) The frequency of transcriptional and translational errors at nonsense codons in the lacZ gene of Escherichia coli. Mol Gen Genet 191: 207–212PubMedCrossRefGoogle Scholar
  93. Sabin AB, Boulger LR (1973) History of Sabin attenuated poliovirus oral live vaccine strains. J Biol Stand 1: 115–118CrossRefGoogle Scholar
  94. Sedivy JM, Capone JP, Raj Bhandary UL, Sharp PA (1987) An inducible mammalian amber suppressor: propagation of a poliovirus mutant. Cell 50: 379–389PubMedCrossRefGoogle Scholar
  95. Simpson L (1990) RNA editing—a novel genetic phenomenon? Science 250: 512–513Google Scholar
  96. Skehel JJ, Wiley DC (1988) Antigenic variation in influenza virus hemagglutinin. In: Domingo E, Holland JJ, Ahlquist P (eds) RNA genetics, vol 3. CRC, Boca Raton, pp 139–146Google Scholar
  97. Smith BD, Inglis SC (1987) The mutation rate and variability of eukaryotic viruses: an analytical review. J Gen Virol 68: 2729–2740PubMedCrossRefGoogle Scholar
  98. Smith FI, Palese P (1988) Intl, lenza virus: high rates of mutation and evolution. In: Domingo E, Holland JJ, Ahlquist P (eds) RNA genetics, vol 3. CRC, Boca Raton, pp 123–135Google Scholar
  99. Stec DS, Waddell A, Schmaljohn CS, Cole GA, Schmaljohn AL (1986) Antibody-selected variation and reversion in Sindbis virus neutralization epitopes. J Virol 57: 715–720PubMedGoogle Scholar
  100. Steinhauer DA, Holland JJ (1987) Rapid evolution of RNA viruses. Annu Rev Microbiol 41: 409–433PubMedCrossRefGoogle Scholar
  101. Steinhauer DA, de la Torre JC, Holland JJ (1989a) High nucleotide substitution error frequencies in clonal pools of vesicular stomatitis virus. J Virol 63: 2063–2071Google Scholar
  102. Steinhauer DA, de la Torre JC, Meier E, Holland JJ (1989b) Extreme heterogeneity in populations of vesicular stomatitis virus. J Virol 63: 2072–2080Google Scholar
  103. Strauss JH, Strauss EG (1988) Evolution of RNA viruses. Annu Rev Microbiol 42: 657–683PubMedCrossRefGoogle Scholar
  104. Temin HM (1989) Is HIV unique or merely different? AIDS 2: 1–9Google Scholar
  105. Ter Meulen V (1989) Virus-induced, cell mediated immunity. In: Notkins AL, Oldstone MBA (eds) Concepts in viral pathogenesis, vol 3. Springer, Berlin Heidelberg, New York, pp 297–310Google Scholar
  106. Theiler M, Smith HH (1937) Use of yellow fever virus modified by in vitro cultivation for human immunization. J Exp Med 65: 787–800PubMedCrossRefGoogle Scholar
  107. Theiler M, Smith HH (1939) The effect of prolonged cultivation in vitro upon the pathogenicity of yellow fever virus. J Exp Med 65: 767–787CrossRefGoogle Scholar
  108. Topai MD, Fresco JR (1976) Complementary base pairing and the origin of substituion mutations. Nature 263: 285–289CrossRefGoogle Scholar
  109. Vartanian J-P, Meyerhans A, Asjö B, Wain-Hobson S (1991) Selection, recombination, and G—+A hypermutation of human immunodeficiency virus type 1 genomes. J Virol 65: 1779–1788PubMedGoogle Scholar
  110. Villaverde A, Martinez MA, Sobrino F, Dopazo J, Moya A, Domingo E (1991) Fixation of mutations at the VP1 gene of foot-and-mouth disease virus. Can quasispecies define a transient molecular clock? Gene (in press)Google Scholar
  111. Ward CD, Stokes MAM, Flanegan JB (1988) Direct measurement of the poliovirus RNA polymerase error frequency in vitro. J Virol 62: 558–562PubMedGoogle Scholar
  112. Watson JD, Crick FHC (1953) The structure of DNA. Cold Spring Harbour Symp Quant Biol 48: 123–133Google Scholar
  113. Wolfenden RV (1969) Tauteromeric equilibria in inosine and adenosine. J Mol Biol 40: 307–310PubMedCrossRefGoogle Scholar
  114. Woodland DL, Happ MP, Gollob KJ, Palmer E (1991) An endogenous retrovirus mediating deletion of aß T cells? Nature 349: 529–530PubMedCrossRefGoogle Scholar
  115. Wright S (1977) Experimental results and evolutionary deductions. In: Wright S (ed) Evolution and the genetics of populations, vol 3. Chicago, Chicago, pp 443–473Google Scholar
  116. Wright S (1982) Character change, speciation, and the higher taxa. Evolution 36: 427–443CrossRefGoogle Scholar
  117. Yamane T, Hopfield JJ (1977) Experimental evidence for kinetic proofreading in the aminoacylation of tRNA by synthetase. Proc Nati Acad Sci USA 74: 2246–2250CrossRefGoogle Scholar
  118. Zimmern D (1988) Evolution of RNA viruses. In: Domingo E, Holland JJ, Ahlquist P (eds) RNA genetics, vol 3. CRC, Boca Raton, pp 211–240Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1992

Authors and Affiliations

  • J. J. Holland
    • 1
  • J. C. De La Torre
    • 2
  • D. A. Steinhauer
    • 3
  1. 1.Department of Biology and Institute of Molecular GeneticsUniversity of California at San DiegoLa JollaUSA
  2. 2.Department of NeuropharmacologyResearch Institute of Scripps ClinicLa JollaUSA
  3. 3.National Institute for Medical ResearchLondonEngland

Personalised recommendations