Frequency Dependent Selective Relaxation Studies of Deuterons in Liquid Crystals

  • K. H. Schweikert
  • H. Gotzig
  • F. Noack
Conference paper


Using a novel field-cycling spectrometer with a fast switchable 1.2 T detection field and fast Fourier transform data processing capabilities, frequency dependent selective deuteron T1 relaxation measurements were performed for several deuterated nematic liquid crystals (e.g. PAA, MBBA), and also for some deuterated solutes in a nematic solvent (e.g. p-xylene in MBBA), over the broad Larmor frequency range from v ≈ 400 Hz to 7.5 MHz 1). Compared with previous proton relaxation dispersion work of the same non-deuterated systems, the longitudinal deuteron relaxation time shows a remarkably small dependence on the frequency, particularly above v ≈ 20 kHz, and it does not clearly reveal in any case the square-root law contribution T1 ~ v 1/2 to be expected from collective molecular reorientations, and well-established by proton studies. The strongest variations, namely by factor of up to 10, occur typically below 20 kHz, where the Zeeman and quadrupolar energies of deutoron spins become comparable.

Pacs numbers

76.60 61.30 


  1. (1).
    K.H. Schwelkert, Thesis, Universität Stuttgart (1990).Google Scholar
  2. (2).
    P. Pincus, Sol.State Commun. 7, 415 (1969).ADSCrossRefGoogle Scholar
  3. (3).
    R. Blinc et. al., Phys.Rev.Lett. 23, 969 (1969).ADSCrossRefGoogle Scholar
  4. (4).
    R.L. Void and R.R. Void in: Nuclear Magnetic Relaxation in Liquid Crystals Reidel, Dordrecht (1983).Google Scholar
  5. (5).
    F. Noack, Progr.Nuci.Magn.Res.Spectrosc. 18, 171 (1986).CrossRefGoogle Scholar
  6. (6).
    e.g. M.F. Brown et al., J.Chem.Phys. 84, 465 (1986)ADSCrossRefGoogle Scholar
  7. (7).
    M. Goldman, Spin Temperature and Nuclear Mag-Magnetic Resonance in Solids, Clarendon Press, Oxford (1970).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • K. H. Schweikert
    • 1
  • H. Gotzig
    • 1
  • F. Noack
    • 1
  1. 1.Physikalisches InstitutUniversität StuttgartStuttgart-80Germany

Personalised recommendations