Advertisement

Alternative Translation and Functional Diversity of Release Factor 2 and Lysyl-tRNA Synthetase

  • Y. Nakamura
  • K. Kawakami
  • O. Mikuni
Conference paper
Part of the NATO ASI Series book series (volume 49)

Abstract

The prfB gene encodes pep tide-chain-release factor 2 which catalyzes translation termination at nonsense codons UGA and UAA in bacteria. Mutations in prfB cause misreading of UGA, i.e., increased frameshift or suppression. These translational errors were due to inefficient translation termination at UGA. As one extreme case, an opal (UGA) mutation in prfB is autogenously suppressed. The prfB gene is in the same operon with herC, a gene defined by a suppressor mutation of a replication-defective ColEl plasmid. The herC gene coincides with lysS, a gene encoding a major species of lysyl-tRNA synthetase. Thus, the genetic organization of prfB and lysS in the same operon may suggest structural, functional and evolutional relevance of these gene products.

Keywords

Suppressor Mutation Tryptophan Operon Stop Codon Recognition Diadenosine Tetraphosphate Plasmid pKK951 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Caskey CT, Forrester WC, Tate W, Ward, CD (1984) Cloning of the Escherichia coli release factor 2 gene. J Bacteriol 158: 365–368PubMedGoogle Scholar
  2. Craigen WJ, Cook RG, Tate WP, Caskey CT (1985) Bacterial peptide chain release factors: conserved primary structure and possible frameshift regulation of release factor 2. Proc Natl Acad Sci USA 82: 3616–3620PubMedCrossRefGoogle Scholar
  3. Dasgupta S, Masukata H, Tomizawa J (1987) Multiple mechanisms for initiation of ColEl DNA replication: DNA synthesis in the presence and absence of ribonuclease H. Cell 51: 1113–1122Google Scholar
  4. Emmerich RV, Hirshfield IN (1987) Mapping of the constitutive lysyl-tRNA synthetase gene of Escherichia coli K-12. J Bacteriol 169: 5311–5313PubMedGoogle Scholar
  5. Gampel A, Tzagoloff A (1989) Homology of aspartyl- and lysyl-tRNA synthetases. Proc Natl Acad Sci USA 86: 6023–6027PubMedCrossRefGoogle Scholar
  6. Garcia GM, Mar PK, Mullin DA, Walker JR, Prather NE (1986) The E. coli dnaY gene encodes an arginine transfer RNA. Cell 45: 453–459Google Scholar
  7. Hirshfield IN, Bloch PL, Bogelen RA, Neidhardt FC (1981) Multiple forms of lysyl-transfer ribonucleic acid synthetase in Escherichia coli. J Bacteriol 146: 345–351PubMedGoogle Scholar
  8. Kawakami K, Jönsson YH, Björk GR, Ikeda H, Nakamura Y (1988a) Chromosomal location and structure of the operon encoding peptide-chain-release factor 2 of Escherichia coli. Proc Natl Acad Sei USA 85: 5620–5624CrossRefGoogle Scholar
  9. Kawakami K, Inada T, Nakamura Y (1988b) Conditionally lethal and recessive UGA- suppressor mutations in the prfB gene encoding peptide chain release factor 2 of Escherichia coli. J Bacteriol 170: 5378–5381PubMedGoogle Scholar
  10. Kawakami K, Naito S, Inoue N, Nakamura Y, Ikeda H, Uchida H (1989) Isolation and characterization of herC, a mutation of Escherichia coli affecting maintenance of ColEl. Mol. Gen. Genet. 219: 333–340Google Scholar
  11. Leveque F, Plateau P, Dessen P, Blanquet S (1990) Homology of lysS and lysUy the two Escherichia coli genes encoding distinct lysyl-tRNA synthetase species. Nucl Acids Res 18: 305–312PubMedCrossRefGoogle Scholar
  12. Parker J (1989) Errors and alternatives in reading the universal genetic code. Microbiol Rev 53: 273–298PubMedGoogle Scholar
  13. Reeves RH, Roth JR (1971) A recessive UGA suppressor. J Mol Biol 56: 523–533PubMedCrossRefGoogle Scholar
  14. Reeves RH, Roth JR (1975) Transfer ribonucleic acid methylase deficiency found in UGA suppressor strains. J Bacteriol 124: 332–34PubMedGoogle Scholar
  15. Rosser JR, Nakamura Y, Yanofsky C (1989) Regulation of basal level expression of the tryptophan operon of Escherichia coli. J Biol Chem 264: 12284–12288Google Scholar
  16. Ryden M, Murphy J, Martin R, Isaksson L, Gallant J (1986) Mapping and complementation studies of the gene for release factor 1. J Bacteriol 168:1066– 1069Google Scholar
  17. Scolnick E, Tompkins R, Caskey T, Nirenberg M (1968) Release factors differing in specificity for terminator codons. Proc Natl Acad Sei USA 61: 768–774CrossRefGoogle Scholar
  18. Sekine Y, Ohtsubo E (1989) Frameshifting is required for production of the transposase encoded by insertion sequence 1. Proc Natl Acad Sei USA 86:4609– 4613Google Scholar
  19. Tsuchihashi Z, Kornberg A (1990) Translational frameshifting generates the y subunit of DNA polymerase III holoenzyme. Proc Natl Acad Sei USA 87:2516– 2520Google Scholar
  20. Van Bogelen RA, Vaughn V, Neidhardt FC (1983) Gene for heat-inducible lysyl- tRNA synthetase (lysU) maps near cadA in Escherichia coli. J Bacteriol 153: 1066–1068Google Scholar
  21. Weiss RB, Dunn DM, Dahlberg AE, Atkins JF, Gesteland RF (1988) Reading frame switch caused by base-pair formation between the 3’ end of 16S rRNA and the mRNA during elongation of protein synthesis in Escherichia coli. EMBO J 7: 1503–1507PubMedGoogle Scholar
  22. Weiss RB, Murphy JP, Gallant JA (1984) Genetic screen for cloned release factor genes. J Bacteriol 158: 362–364PubMedGoogle Scholar
  23. Yamao F, Muto A, Kawauchi Y, Iwami M, Iwagami Y, Azumi Y, Osawa S (1985) UGA is read as tryptophan in Mycoplasma capricolum. Proc Natl Acad Sei USA 82: 2306–2309CrossRefGoogle Scholar
  24. Zamecnik PC (1983) Diadenosine-5,5M,-tetraphosphate (Ap4A): its role in cellular metabolism. Anal Biochem 134: 1–10PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Y. Nakamura
    • 1
  • K. Kawakami
    • 1
  • O. Mikuni
    • 1
  1. 1.Department of Tumor Biology The Institute of Medical ScienceThe University of TokyoP.O. Takanawa, Tokyo 108Japan

Personalised recommendations