Zur Theorie der „seltsamen“ Teilchen

  • H.-P. Dürr
  • W. Heisenberg
Part of the Gesammelte Werke / Collected Works book series (HEISENBERG, volume A / 3)


The strange particles can be represented within the framework of the nonlinear spinor theory by taking into account the degeneracy with respect to isospin and parity of the groundstate “vacuum”. Use is made of the mathematical analogy between the theory of superconductivity and the theory of elementary particles, and in a first approximation a fourfold degeneracy of the ground-state is assumed. Each auf the four states is considered as a mixture of states of similar symmetry. The Green-functions of the type \( \left\langle {{\Omega_{\alpha }}\left| {TX(x)\bar{X}\left( {x'} \right)} \right|{\Omega_{\beta }}} \right\rangle \) are considered as invariant under the proper Lorentz-group, CPT and PG, applied on the field operators or the states \( \left. {{\Omega_{\alpha }}} \right\rangle \) separately; but as invariant under isospin rotation, P or CT or G, only if the transformation is applied on the field-operators and the states \( \left. {{\Omega_{\alpha }}} \right\rangle \) simultaneously. Parity is represented in a manner discussed in an earlier paper by one of the authors. Only stationary states of strangeness 1 can be considered in this approximation. The fourfold degeneracy of the K-meson is reduced to an additional symmetry which may be connected later with the existence of electromagnetic charge. The results of the calculations may be interpreted by describing the strange particles as composed of ordinary particles and a “spurion” taken from the groundstate “vacuum”. The “spurion” carries an isospin 1/2 and a parity. The masseigenvalues and the parity of the particles are calculated by means of a slightly improved version of the Tamm-Dancoff-method. The theoretical masseigenvalues agree qualitatively with the observed masses. The calculated relative parities of the strange particles may later be checked by experiments. Besides the known particles of strangeness 1, the theory yields other eigen-states which are probably highly unstable since they could disintegrate into more stable particles by means of strong or electromagnetic interactions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.-P. Dürr, W. Heisenberg, H. Mitter, S. Schlieder u. K. Yamazaki, Z. Naturforschg. 14 a, 441 [1959]; im folgenden als „A“zitiert.Google Scholar
  2. 2.
    H.-P. Dürr, Z. Naturforsdig. 16 a, 327 [1961]; im folgenden als „B“zitiert.Google Scholar
  3. 3.
    Y. Nambu, Phys. Rev. Lett. 4, Nr. 7, 380 [1960] u. Bericht d. Rochester-Konferenz 1960, S. 858.CrossRefGoogle Scholar
  4. 4.
    N. N. Bogoljubow, J. Exp. Theor. Phys., USSR 34 (7), 41 [1958] u. Vortrag auf d. Konferenz in Amsterdam 1959.Google Scholar
  5. 5.
    Vgl. L. P. Gorkov, J. Exp. Theor. Phys., USSR 34 (7), 505 [1958]; ferner P. Mittelstaedt, Z. Naturforschg., im Erscheinen.Google Scholar
  6. 6.
    G unterscheidet sich von C durch die Isospinumkehrung, vgl. T. D. Lee u. C. N. Yang, Nuovo Cim. 3, 749 [1956]. Die PG-Spiegelung der χ-Operatoren ist in der üblichen Darstellung durch Open image in new window gegeben.CrossRefMathSciNetGoogle Scholar
  7. 8.
    Vgl. z. B. P. T. Mathews u. A. Salam, Proc. Roy. Soc., Lond. A 221, 128 [1954].CrossRefGoogle Scholar
  8. 9.
    Eine ähnliche Vorschrift wurde auch von K. Ladányi, Z. Naturforschg. 16 a, 79 [1961], angegeben.Google Scholar
  9. 10.
    K. Just, J. Hartmann u. H. v. Ossowski, Z. Phys. 158. 39 [1960].CrossRefzbMATHGoogle Scholar
  10. 12.
    Vgl. auch G. Lüders, Nuovo Cim. Rendiconti S. I. F. XI Corso, S. 9 [1961].Google Scholar
  11. 13.
    M. M. Block u. Mitarbeiter, Bericht von der Rochester-Konferenz 1960, S. 419.Google Scholar
  12. 14a.
    Ph. Meyer, J. Prentki u. Y. Yamaguchi, Phys. Rev. Lett. 5, 44:2 [1960].Google Scholar
  13. 14b.
    M. Muraskin, Phys. Rev. 119, 818 [1960].Google Scholar
  14. 14c.
    J. Sucher u. G. A. Snow, Nuovo Cim. 18, 195 [1960].CrossRefGoogle Scholar
  15. 15.
    L. Okun u. I. Ia. Pomeranchuk, J. Exp. Theor. Phys., USSR 34, 997 [1958].Google Scholar
  16. 16.
    W. M. Frank, I. Goldberg u. R. M. Rockmore, Phys. Rev. 117, 1402: [1960].CrossRefGoogle Scholar
  17. 17.
    R. Ascoli u. W. Heisenberg, Z. Naturforschg. 12 a, 177 [1957].MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • H.-P. Dürr
    • 1
  • W. Heisenberg
    • 1
  1. 1.Max-Planck-Institut für Physik und AstrophysikMünchenDeutschland

Personalised recommendations