Advertisement

On the Isospin Group in the Theory of the Elementary Particles

  • W. Heisenberg
  • W. Pauli
Part of the Gesammelte Werke / Collected Works book series (HEISENBERG, volume A / 3)

Abstract

In the old spinor model discussed by one of us (H.)1) which was based on a Lagrangian
$$ L' = \psi * {\gamma_{\nu }}\frac{\partial }{{\partial {x_{\nu }}}}\psi + \frac{{{l^2}}}{2}{\left( {{\psi^{ + }}\psi } \right)^2},\,\left( {with\,{\psi^{ + }} = \psi * {\gamma_4}} \right) $$
(1)
the isospin group was not contained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. 1).
    Compare e.g. W. Heisenberg, Rev. Mod. Phys. 29, No 3, 269, 1957.CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2).
    F. Gürsey, Relation of charge independence and baryon conservation to Pauli’s transformation (Preprint).Google Scholar
  3. 3).
    W. Pauli, Nuovo Cim. (X) 6, 204, 1957.CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4).
    A.S. Wightman, Phys. Rev. 101, 860, 1956.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5).
    R. Ascoli and W. Heisenberg, Zs. f. Naturforschg. 12a, 177, 1957.MathSciNetGoogle Scholar
  6. 6).
    G. Källén and W. Pauli, Mat. Fys. Medd. Dan. Vid. Selsk. 30, No 7, 1955, andGoogle Scholar
  7. 6a).
    W. Heisenberg, Nuclear Physics 4, 532, 1957.CrossRefzbMATHGoogle Scholar
  8. 7a).
    H. Lehmann, K. Symanzik and W. Zimmermann, Nuovo Cim. (X) 2, 425, 1955;CrossRefzbMATHMathSciNetGoogle Scholar
  9. 7b).
  10. 7c).
    V. Glaser, H. Lehmann and W. Zimmermann, Nuovo Cim. (X) 6, 1122, 1957.CrossRefzbMATHMathSciNetGoogle Scholar
  11. 8).
    B. d’Espagnat et J. Prentki, Nuclear Physics 1, 33, 1956.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • W. Heisenberg
    • 1
  • W. Pauli
    • 2
  1. 1.GöttingenDeutschland
  2. 2.ZürichDeutschland

Personalised recommendations