On the Mathematical Frame of the Theory of Elementary Particles

  • W. Heisenberg
Part of the Gesammelte Werke / Collected Works book series (HEISENBERG, volume A / 3)


When two elementary particles collide at very high energy, any other type of particle can be created in the collision process; sometimes many different particles may emerge in one single act. This fairly well established experimental fact seems to suggest that the future theory of elementary particles will have to start with a unified field [1], referring simply to “matter” or “energy,” not to any special type of particle; for this unified field some kind of exchange relations and field equations may be given, which lead to the existence of continuous and discrete eigenvalues. The discrete eigenvalues describe “particles” which may be called elementary or compound particles according to convenience without sharp distinction between both definitions. All particles have a finite size, of the order 10-13 cm diameter or (partly much) larger. In trying to localize a particle in a smaller area, one simply creates new particles.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Heisenberg, W. “The Present Situation in the Theory of Elementary Particles.” Two lectures, Cambridge University Press, 1949zbMATHGoogle Scholar
  2. 1a.
    Heisenberg, W. “Zur Quantentheorie der Elementarteilchen”, Zeitschrift für Naturforschung, Volume 5a, 1950, p. 251Google Scholar
  3. 1b.
    Heisenberg, W. “Stationäre Zustände in der relativistischen Quantentheorie der Wellenfelder”, Zeitschrift für Naturforschung, Volume 5a, 1950, p. 367. The present article is a survey of these three papers together with a comment on recent work on the same subject.Google Scholar
  4. 2.
    Tomonaga, S. “On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields”, Progress in Theoretical Physics, Volume 1, 1946, p. 27Google Scholar
  5. 2a.
    Feynman, R. P. “Space-Time Approach to Non-Relativistic Quantum Mechanics,” Review of Modern Physics, Volume 20, 1948, p. 367Google Scholar
  6. 2b.
    Schwinger, J. “Quantum Electrodynamics. I. A Covariant Formulation”, Physical Review, Volume 74, 1948, p. 1439.Google Scholar
  7. 3.
    Dyson, F. J. “The Radiation Theories of Tomonaga, Schwinger and Feynman”, Physical Review, Volume 75, 1949, p. 486Google Scholar
  8. 3a.
    Dyson, F. J. “The S Matrix in Quantum Electrodynamics”, Physical Review, Volume 75, 1949, p. 1736.Google Scholar
  9. 4.
    Heisenberg, W. “Die ‘beobachtbaren Grössen’ in der Theorie der Elementarteilchen”, Zeitschrift für Physik, Volume 120, 1943, p. 513Google Scholar
  10. 4a.
    Heisenberg, W. “Die ‘beabachtbaren Grössen’ in der Theorie der Elementarteilchen”, Volume 120, 1943, p. 673.Google Scholar
  11. 5.
    Fierz, M. “Über die Bedeutung der Funktion S in der Quantentheorie der Wellenfelder”, Helvetica Physica Acta, to be published shortly.Google Scholar
  12. 6.
    Snyder, H. S. “Quantized Space-Time”, Physical Review, Volume 71, 1946, p. 38.Google Scholar
  13. 7.
    Yukawa, H. “Quantum Theory of Non-Local Fields. Part I. Free Fields”, Physical Review, Volume 77, 1949, p. 219.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • W. Heisenberg
    • 1
  1. 1.Max-Planck-Institut für PhysikGöttingenDeutschland

Personalised recommendations