High-Resolution Particle Analysis — Its Application to Platelet Counting and Suggestions for Further Application in Blood Cell Analysis

  • John L. Haynes
Conference paper


The characteristics of an instrument for high-resolution particle analysis in flow are discussed. It employs a combination of hydrodynamic focusing, fluid resistors, and electronic techniques to achieve precision and ease of use heretofore unobtainable in a moderate-cost clinical instrument. Its application to whole blood platelet counting is discussed, and suggestions are made for its possible application to a wide variety of blood cell measurements.

Key Words

Platelets Counting Sizing Aggregation Hydrodynamic focusing Blood cells. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ADAMS, T., SCHUTZ, L., GOLDBERG, L.: Platelet function abnormalities in the myeloproliferative disorders. Scand. J. Haematol. 13, 215–224, 1974 PubMedCrossRefGoogle Scholar
  2. BAUER, J., VALET, G.: Personal communicationGoogle Scholar
  3. BACUS, J. W., WATT, S., TROBAUGH, F. E.: Clinical evaluation of the Ultra-Flow 100 whole blood platelet analyzer (in press) 1979 Google Scholar
  4. BANGS, L. B.: Plain Particles. Catalog data sheet, Dow Chemical, Midland, Michigan 48640. February 1978 Google Scholar
  5. BESSIS, M., MOHANDAS, N.: A diffractometric method for the measurement of cellular deformability. Blood Cells 1, 307–313, 1975 Google Scholar
  6. BICHER, H. I.: The “membrane capacitance” aggregometer − a method for measuring platelet aggregation in whole blood. Angiology 22, 285–294, 1971 PubMedCrossRefGoogle Scholar
  7. BORN, G.V.R.: Quantitative investigations into the aggregation of blood platelets. J. Physiol. 162, 67P-68P, 1962 Google Scholar
  8. BOWDLER, A. J., SWISHER, S. N.: Electronic particle counting applied to the quantitative study of red cell agglutination. Transfusion 4, 153–168, 1964 PubMedCrossRefGoogle Scholar
  9. Bowie, E.J.W., Owen, C. A., Jr., Thompson, J. H., Jr., Didisheim, P.: Platelet adhesiveness in von Willebrand’s disease. Am. J. Clin. Pathol. 52, 69–77, 1969 PubMedGoogle Scholar
  10. BURNS, T. S., SAUNDERS, R. N.: Quantitation of in vivo platelet aggregation by the platelet aggregate ratio method. Thromb. Res. 10, 629–633, 1977 PubMedCrossRefGoogle Scholar
  11. College of American Pathologists Laboratory Survey Set H-A Hematology-Clinical Microscopy. Chicago, CAP, 1979, 5 pGoogle Scholar
  12. COULTER, W. H.: Means for counting particles suspended in a fluid. U.S. Patent 2, 656, 508, 1953 Google Scholar
  13. DEYKIN, D., HELLERSTEIN, L. J.: The assessment of drug-dependent and isoimmune antiplatelet antibodies by the use of platelet aggregometry. J. Clin. Invest. 51, 3142–3153, 1972 PubMedCentralPubMedCrossRefGoogle Scholar
  14. Evans, G., Packham, M. A., Nishizawa, E. E., Mustard, J. F., Murphy, E. A.: The effect of acetylsalicylic acid on platelet function. J. Exp. Med. 128, 877–894, 1968 PubMedCentralPubMedCrossRefGoogle Scholar
  15. GEAR, A.R.L.: Erythrocyte osmotic fragility: Micromethod based on resistive-particle counting. J. Lab. Clin. Med. 90, 914–928, 1977 PubMedGoogle Scholar
  16. HARTMANN, R. C.: Tests of platelet adhesiveness and their clinical significance. Semin. Hematol 5, 60–72, 1968 Google Scholar
  17. HAUT, M. J., COWAN, D. H.: The effect of ethanol on hemostatic properties of human blood platelets. Am. J. Med. 56, 22–33, 1974 PubMedCrossRefGoogle Scholar
  18. Haynes, J. L., Shoor, B. A.: Particle density measuring system. U.S. Patent 4, 110, 604, 1978 Google Scholar
  19. Hughes-Jones, N. C., Norley, I., Young, J.M.S., England, J. M.: Differential white cell counts by frequency distribution analysis of cell volumes. J. Clin. Pathol. 27, 623–625, 1974 PubMedCrossRefGoogle Scholar
  20. HUMPHRIES, R. K., MILLER, R. G.: Volume analysis of human peripheral blood leukocytes. Ser. Haematol. 5, 142–162, 1972 PubMedGoogle Scholar
  21. KACHEL, V., METZGER, H., RUHENSTROTH-BAUER, G.: Der Einfluss der Partikeldurchtrittsbahn auf die Volumenverteilungskurven nach dem Coulter-Verfahren. Z. Gesamte Exp. Med. 153, 331–347, 1970 PubMedCrossRefGoogle Scholar
  22. KACHEL, V.: Eine elektronische Methode zur Verbesserung der Volumenauflösung des Coulter-Partikelvolumenmebbverfahrens. Blut 27, 270–274, 1973 PubMedCrossRefGoogle Scholar
  23. KACHEL, V.: Basic principles of electrical sizing of cells and particles and their realization in the new instrument “Metricell”. J. Histochem. Cytochem. 24, 211–230, 1976 PubMedCrossRefGoogle Scholar
  24. MCKAY, D. G.: Disseminated Intravascular Coagulation; an Intermediary Mechanism of Disease.New York, Harper and Row, 1965 Google Scholar
  25. MEL, H. C., YEE, J. P.: Erythrocyte size and deformability studies by resistive pulse spectroscopy. Blood Cells 1, 391–399, 1975 Google Scholar
  26. Menke, E., Kordwig, E., Stuhlmüller, P., Kachel, V., Ruhenstroth-Bauer, G.: A volume-activated cell sorter. J. Histochem. Cytochem. 25, 796–803, 1977 PubMedCrossRefGoogle Scholar
  27. MUNDSCHENK, D. D., CONNELLY, D. P., WHITE, J. G., BRUNNING, R. D.: An improved technique for the electronic measurement of platelet size and shape. J. Lab. Clin. Med. 88, 301–315, 1976 PubMedGoogle Scholar
  28. PAULUS, J. M.: Platelet size in man. Blood 46, 321–336, 1975 PubMedGoogle Scholar
  29. Red Cell Form and Deformability. Blood Cells 1, 269–404, 1975 Google Scholar
  30. Red Cell Rheology. Blood Cells 3, 1–438, 1977 Google Scholar
  31. Ross, D. W.: Cell volume growth after cell cycle block with chemotherapeutic agents. Cell Tissue Kinet. 9, 379–387, 1976 PubMedGoogle Scholar
  32. Ross, D. W.: A new technique for surveillance of response to chemotherapy in leukemia. Blood Cells 3, 677–686, 1977 Google Scholar
  33. SABA, S. R., MASON, R. G.: Some effects of nicotine on platelets. Thromb. Res. 7, 819–824, 1975 PubMedCrossRefGoogle Scholar
  34. SALZMAN, E. W.: Measurement of platelet adhesiveness; a simple in vitro technique demonstrating an abnormality in von Willebrand’s disease. J. Lab. Clin. Med. 62, 724–735, 1963 PubMedGoogle Scholar
  35. SHANK, B. B., ADAMS, R. B., STEIDLEY, K. D., MURPHY, J. R.: A physical explanation of the bimodal distribution obtained by electronic sizing of erythrocytes. J. Lab. Clin. Med. 74, 630–641, 1969 PubMedGoogle Scholar
  36. SPIELMAN, L., GOREN, S. L.: Improving resolution in Coulter counting by hydrodynamic focusing. J. Colloid Interface Sci. 26, 175–182, 1968 CrossRefGoogle Scholar
  37. THOM, R., HAMPE, A., SAUERBREY, G.: Die elektronische Volumenbestimmung von Blutkörperchen und ihre Fehlerquellen. Z. Gesamte Exp. Med. 151, 331–349, 1969 PubMedCrossRefGoogle Scholar
  38. THOM, R.: Vergleichende Untersuchungen zur Elektronischen Zellvolumen-Analyse. A.E.G. Telefun-ken, Publ. Nl/EP, Ulm-Donau, W. Germany, 1972 Google Scholar
  39. VAN DILLA, M. A. FULWYLER, M. J., BOONE, I. U.: Volume distribution and separation of normal human leucocytes. Proc. Soc. Exp. Biol. Med. 125, 367–370, 1967 PubMedCrossRefGoogle Scholar
  40. von BEHRENS, W.E.: Platelet Size. Doctoral thesis, University of Adelaide, Australia, 1972 Google Scholar
  41. von BEHRENS, W. E.: Mediterranean macrothrombocytopenia. Blood 46, 199–208, 1975 PubMedGoogle Scholar
  42. von BEHRENS, W. E., EDMONSON, S.: Comparison of techniques improving the resolution of standard Coulter cell sizing systems. J. Histochem. Cytochem. 24, 247–256, 1976 CrossRefGoogle Scholar
  43. Wu, K. K., HOAK, J. C., THOMPSON, J. S., KOEPKE, J. A.: Use of platelet aggregometry in selection of compatible platelet donors. N. Engl. J. Med. 292, 130–133, 1975 PubMedCrossRefGoogle Scholar
  44. ZIMMERMANN, U., PILWAT, G., RIEMANN, F.: Dielectric breakdown of cell membranes. Biophys. J. 14, 881–899, 1974 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • John L. Haynes
    • 1
  1. 1.Becton Dickinson Electronics LaboratoryMountain ViewUSA

Personalised recommendations