Advertisement

Cell Density Profile as a Measure of Erythrocyte Hydration: Therapeutic Alteration of Salt and Water Content in Normal and SS Red Blood Cells

  • Eugene P. Orringer
  • Marjorie E. S. Roer
  • John C. Parker
Conference paper

Abstract

The incubation of red blood cells in high concentrations of sodium bicarbonate produces a net influx of salt and water resulting in the dilution of cell hemoglobin. After reinfusion into the donor, cells swollen in this manner can be readily identified in peripheral blood samples by their low density on phthalate gradients. It is proposed that this manipulation of cell water content may have therapeutic implications for sickle cell disease, since the rate of deoxyhemoglobin S gelation is retarded by small reductions in hemoglobin concentration.

Key Words

Anemia Sickle cell Cell volume regulation Erythrocyte density Erythrocyte membrane permeability. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    BOOKCHIN, R.M., BALAZS, T., LANDAU, L.C.: Determinants of red cell sickling. Effects of varying pH and of increasing intracellular hemoglobin concentration by osmotic shrinkage. J. Lab. Clin. Med. 87, 597, 1976 PubMedGoogle Scholar
  2. 2.
    CERAMI, A., MANNING, J.M.: Potassium cyanate as an inhibitor of the sickling of erythrocytes in vitro. Proc. Natl. Acad. Sci. USA 68, 1180, 1973 CrossRefGoogle Scholar
  3. 3.
    CHIEN, S.: Rheology of sickle cells and erythrocyte content. Blood Cells 3, 283, 1977 Google Scholar
  4. 4.
    DANON, D., MARIKOVSKY, Y.: Determination of density distribution of red cell population. J. Lab. Clin. Med. 64, 668, 1964 PubMedGoogle Scholar
  5. 5.
    DEAN, J., SCHECHTER, A.N.: Sickle-cell anemia: Molecular and cellular bases of therapeutic approaches. N. Engl. J. Med. 299, 752, 804, 863, 1978 PubMedCrossRefGoogle Scholar
  6. 6.
    DIEDERICH, D.A., TRUEWORTHY, R.C., GILL, P., CADER, A.M., LARSEN, W.E.: Hematologic and clinical responses in patients with sickle cell anemia after chronic extracorporeal red cell carbamylation. J. Clin. Invest. 58, 642, 1976 CrossRefGoogle Scholar
  7. 7.
    FUNDER, J., TOSTESON, D.C., WIETH, J.O.: Effects of bicarbonate on lithium transport in human red cells. J. Gen. Physiol. 71, 721, 1978 PubMedCrossRefGoogle Scholar
  8. 8.
    FUNDER, J., WIETH, J.O.: Effects of some monovalent anions on fluxes of Na and K, and on glucose metabolism of ouabain treated human red cells. Acta Physiol. Scand. 71, 168, 1967 PubMedCrossRefGoogle Scholar
  9. 9.
    GARY-BOBO, C.M., SOLOMON, A.K.: Properties of hemoglobin solutions in red cells. J. Gen. Physiol. 52, 825, 1968 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    GUY, R.B., GAVRILIS, P.K., ROTHENBERG, S.P.: In vitro and in vivo effect of hypotonic saline on the sickling phenomenon. Am. J. Med. Sci. 266, 267, 1973 PubMedCrossRefGoogle Scholar
  11. 11.
    HOFRICHTER, J., ROSS, P.D., EATON, W.A.: Kinetics and mechanism of deoxyhemoglobin S gelation: A new approach to understanding sickle cell disease. Proc. Natl. Acad. Sci. USA 71, 4864, 1974 PubMedCrossRefGoogle Scholar
  12. 12.
    KOWALCZYKOWSKI, S., STEINHARDT, J.: Kinetics of hemoglobin S gelation followed by continuously sensitive low-shear viscosity. Changes in viscosity and volume on aggregation. J. Mol. Biol. 155, 201, 1977 CrossRefGoogle Scholar
  13. 13.
    LINCOLN, T.L., AROESTY, J., MORRISON, P.: Iron-deficiency anaemia and sickle-cell disease: A hypothesis. Lancet 2, 260, 1973 PubMedCrossRefGoogle Scholar
  14. 14.
    MAGDOFF-FAIRCHILD, B., SWERDLOW, P.H., BERTLES, J.F.: Intermodular organization of deoxy- genated sickle hemoglobin determined by X-ray diffraction. Nature 239, 217, 1972 PubMedCrossRefGoogle Scholar
  15. 15.
    PARKER, J.C.: Influence of 2,3-diphosphoglycerate metabolism on sodium-potassium permeability in human red blood cells. Studies with bisulfite and other redox agents. J. Clin. Invest. 48, 117, 1969 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    PARKER, J.C.: Ouabain-insensitive effects of metabolism on ion and water content of red blood cells. Am. J. Physiol. 221, 338, 1971 PubMedGoogle Scholar
  17. 17.
    PARKER, J.C.: Dog red blood cells. Adjustment of density in vivo. J. Gen. Physiol. 61, 146, 1973 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    PARKER, J.C., HOFFMAN, J.F.: The role of membrane phosphoglycerate kinase in the control of glycolytic rate by active cation transport in human red blood cells. J. Gen. Physiol. 50, 893, 1967 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    PARKER, J.C., ORRINGER, E.P., MCMANUS, T.J.: Disorders of ion transport in red blood cells. In: ANDREOLI, T.E., HOFFMAN, J.F., FANESTIL, D.D., eds., Physiology of Membrane Disorders. Plenum, New York, 1978, p. 773CrossRefGoogle Scholar
  20. 20.
    PETERSON, C.M., TSAIRIS, P., OHNISHI, A., LU, Y.S., GRADY, R., CERAMI, A., DYCK, P.J.: Sodium cyanate induced polyneuropathy in patients with sickle-cell disease. Ann. Intern. Med. 81, 152, 1974 PubMedCrossRefGoogle Scholar
  21. 21.
    PIERCE, H.I., KURACHI, S., SOFRONIADOU, K., STAMATOYANNOPOULOS, G.: Frequencies of thalassemia in American blacks. Blood 49, 981, 1977 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Eugene P. Orringer
    • 1
  • Marjorie E. S. Roer
    • 1
  • John C. Parker
    • 1
  1. 1.Division of Hematology, Departments of Medicine and Laboratory MedicineSchool of Medicine, The University of North CarolinaChapel HillUSA

Personalised recommendations