Automated Ektacytometry: A New Method of Measuring Red Cell Deformability and Red Cell Indices

  • Marcel Bessis
  • Narla Mohandas
  • Claude Feo
Conference paper


The automated ektacytometer enables rapid measurement of red cell deformability by using small aliquots of blood (25 μl). By subjecting red cells to varying shear stress in suspending media of different osmolalities, one can identify separate contributions of membrane viscoelastic properties, internal viscosity, and surface area-to-volume ratio to overall cellular deformability. The influence of drugs on red cell deformability can also be investigated.

Analysis of the diffraction pattern of red cells that are aligned in the ektacytometer at minimal shear stress enables improved measurement of red cell diameter. Modern computerized image analysis can further improve the reliability of this measurement. Volume measurement of red cells of unusual shape is possible since, under certain conditions, they transform into uniform ellipsoids in the ektacytometer. Aided again by improved image analysis, simple accurate computation of red cell volume becomes possible.

Ektacytometric measurement may provide a sensitive assessment of the overall functional integrity of living red cells or subpopulations of red cells. As such, these measurements are of research interest and may have major clinical utility.

Key Words

Red cell Deformability Indices. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ALLARD, C., MOHANDAS, N., BESSIS, M.: Red cell deformability changes in hemolytic anemias estimated by diffractometric methods (ektacytometry). Blood Cells 3, 209–221, 1977 Google Scholar
  2. 2.
    BESSIS, M., MOHANDAS, N.: Mesure continue de la déformabilité cellulaire par une méthode diffractometrique. C.R. Acad. Sci. (Paris) [D] 278, 3263–3265, 1974 Google Scholar
  3. 3.
    BESSIS, M., MOHANDAS, N.: A diffractometric method for the measurement of cellular deformability. Blood Cells 1, 303–313, 1975 Google Scholar
  4. 4.
    BESSIS, M., MOHANDAS, N.: Deformability of normal, shape-altered and pathological cells. Blood Cells 1, 315–321, 1975 Google Scholar
  5. 5.
    BESSIS, M., MOHANDAS, N.: Déformation et orientation des globules rouges falciformes soumis à des forces de cisaillesment. C.R. Acad. Sci. (Paris) [D] 282, 1567–1570, 1976 Google Scholar
  6. 6.
    BESSIS, M., MOHANDAS, N.: Laser diffraction patterns of sickle cells in fluid shear fields. Blood Cells 3, 229–239, 1977 Google Scholar
  7. 7.
    CLARK, M.R., MOHANDAS, N., CAGGIANO, V., SHOHET, S.B.: Effects of abnormal cation transport on deformability of desiccytes. J. Supramol. Struct. 8, 521–532, 1978 PubMedCrossRefGoogle Scholar
  8. 8.
    CLARK, M.R., MOHANDAS, N., SHOHET, S.B.: Deformability of oxygenated irreversibly sickled cells. J. Clin. Invest. 65, 189–196, 1980 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    CORNILLAULT, J.: Particle size analyser. Appl. Opt. 11, 265–268, 1972 PubMedCrossRefGoogle Scholar
  10. 10.
    Cox, R.T., PONDER, E.: A new form of diffractometer. J. Gen. Physiol. 24, 619–627, 1941 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    FISCHER, T.M.: A comparison of flow behavior of disc shaped versus elliptic red blood cells. Blood Cells 4, 453–460, 1978 Google Scholar
  12. 12.
    FLEURET, J., MAITRE, H., THERY, J.F.: Analyse du spectre de diffraction d’une population de particules. 1er Congrès Européen d’Optique Appliquée à la Métrologie, Strasbourg, 1977 Google Scholar
  13. 13.
    GOLDSMITH, H.L., MARLOW, J.: Flow behavior of erythrocytes. I. Rotation and deformation in dilute suspension. Proc. Roy. Soc. (London) [B] 182, 351–370, 1972 CrossRefGoogle Scholar
  14. 14.
    GRONER, W., MOHANDAS, N., BESSIS, M.: The ektacytometer-A technique for measuring RBC deformability (to be presented at the 12th annual Symposium on Advanced Analytical Concepts for the Clinical Laboratory, April 24–25, 1980)Google Scholar
  15. 15.
    MOHANDAS, N., PHILLIPS, W.M., BESSIS, M.: Red blood cell deformability and hemocytic anemias. Sem. Hematol. 16, 95–114, 1979 Google Scholar
  16. 16.
    MOHANDAS, N., CLARK, M.R., JACOBS, M.S., SHOHET, S.B.: A new approach to identification of factors influencing red cell deformability. Blood 54 [Suppl. 1], 30a, 1979 Google Scholar
  17. 17.
    MOHANDAS, N., CLARK, M.R., JACOBS, M.S., SHOHET, S.B.: Ektacytometry analysis of factors regulating red cell deformability. Blood Cells 6, 329–334, 1980 PubMedGoogle Scholar
  18. 18.
    PIJPER, A.: The diffraction method of measuring red blood cells. J. Lab. Clin. Med. 32, 857–868, 1947 Google Scholar
  19. 19.
    PONDER, E.: Hemolysis and Related Phenomena. New York, Grune and Stratton, 1948, p. 62–73Google Scholar
  20. 20.
    SERJEANT, G.R., SERJEANT, B.E., MILNER, P.F.: The irreversibly sickled cell: A determinant of haemolysis in sickle cell anemia. Br. J. Haematol. 17, 527–533, 1969 PubMedCrossRefGoogle Scholar
  21. 21.
    WALTER, T., MENTZER, W., GREENQUIST, W., SCHRIER, S., MOHANDAS, N.: RBC membrane abnormalities in hereditary pyropoikilocytosis. Blood 50 [Suppl. 1], 98, 1977 Google Scholar
  22. 22.
    YOUNG, T.H.: An Introduction to Medical Literature Including a System of Practical Nosology. London, Underwood, 1813, (p. 545)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Marcel Bessis
    • 1
  • Narla Mohandas
    • 2
  • Claude Feo
    • 1
  1. 1.Institut de Pathologie Cellulaire (INSERM U-048, CNRS ERA 92, Ecole Pratique des Hautes Etudes)Université de Paris, Hôpital de BicêtreLe Kremlin-BicêtreFrance
  2. 2.MacMillan-Cargill Hematology Research LaboratoryUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations