Quantitative Morphological Analysis of Red Blood Cells

  • James W. Bacus
Conference paper


Recently developed methods for making quantitative measurements of red cell morphology are described. High-speed image processing is used to make six simultaneous red cell measurements relating to size, hemoglobin content, central pallor, and shape. These measurements are combined objectively to subdivide red cells into five subpopulations and to characterize each subpopulation by its principal distributional parameters. Also, an objective assessment of the blood sample is made relative to the diagnosis of anemia. Results from five typically encountered blood conditions are presented and analyzed in detail to illustrate the various distributional parameters involved and to illustrate the potential of these new measurements to extract relevant diagnostic information.

Key Words

Erythrocytes Pattern recognition Shape. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    BACUS, J.W.: Erythrocyte morphology and centrifugal “spinner” blood film preparations. J. Histochem. Cytochem. 22, 506–516, 1974 PubMedCrossRefGoogle Scholar
  2. 2.
    BACUS, J.W., BELANGER, M.G., AGGARWAL, R.K., TROBAUGH, F.E., Jr.: Image processing for automated erythrocyte classification. J. Histochem. Cytochem. 24, 195–201, 1976 PubMedCrossRefGoogle Scholar
  3. 3.
    BACUS, J.W., WEENS, J.H.: An automated method of differential red blood cell classification with application to the diagnosis of anemia. J. Histochem. Cytochem. 25, 614–632, 1977 PubMedCrossRefGoogle Scholar
  4. 4.
    BACUS, J.W.: The development of automated differential systems. 1977 Aspen Conference Proceedings on Differential Leukocyte Counting, J.A. KOEPKE, ed., Coll. Am. Pathol., Skokie, Illinois, 1979 Google Scholar
  5. 5.
    BACUS, J.W.: Quantitative measurement of red blood cell central pallor and hypochromasia. Anal, and Quant. Cyt. (in press) 1980 Google Scholar
  6. 6.
    BAHR, G.F., ZEITLER, E.: Determination of the total dry mass of human erythrocytes by quantitative electron microscopy. Lab. Invest., 11, 912–917, 1962 PubMedGoogle Scholar
  7. 7.
    BENTLEY, S.A., LEWIS, S.M.: The use of an image analyzing computer for the quantitation of red cell morphological characteristics. Br. J. Hematol. 29, 81–88, 1975 CrossRefGoogle Scholar
  8. 8.
    BENTLEY, S.A., LEWIS, S.M.: The morphological classification of red cells using an image analyzing computer. Br. J. Haematol. 32, 205, 1976 PubMedCrossRefGoogle Scholar
  9. 9.
    BRECHER, G., SCHNEIDERMAN, M.A., WILLIAMS, G.Z.: Evaluation of an electronic red cell counter. Am. J. Clin. Pathol. 26, 1439–1449, 1956 PubMedGoogle Scholar
  10. 10.
    COULTER, W.H.: U.S. Patent 2656508, 1953 Google Scholar
  11. 11.
    EDEN, M.: Image processing techniques in relation to studies of red cell shape. In: BESSIS, M., WEED, R.I., LEBLOND, P.F., eds. Red Cell Shape. New York, Springer-Verlag, 1973, pp. 141–149CrossRefGoogle Scholar
  12. 12.
    ENGLAND, J.M., DOWN, M.C.: Measurement of the mean cell volume using electronic particle counters. Br. J. Haematol. 32, 403–409, 1976 PubMedCrossRefGoogle Scholar
  13. 13.
    FUNKUNAGA, K.: Introduction to Statistical Pattern Recognition. New York, Academic Press, 1972 Google Scholar
  14. 14.
    GREEN, J.E.: Computer methods for erythrocyte analysis. Proc. of the Symp. on Feature Extraction and Selection in Pattern Recognition. IEEE Catalog No.70CS1C, Argonne, Illinois, October 1970, p. 100–109Google Scholar
  15. 15.
    HAMMARSTEN, E., THORELL, B., Aquist, S., ELIASSON, N., AKERMAN, L.: Studies on the hemoglobin formation during regenerative erythropoiesis. Exp. Cell Res. 5, 404–415, 1953 PubMedCrossRefGoogle Scholar
  16. 16.
    HAUNG, T.S., ed.: Topics in Applied Physics, Picture Processing and Digital Filtering. New York, Springer-Verlag 1975 Google Scholar
  17. 17.
    JAMES, V., GOLDSTEIN, D.J.: Haemoglobin content of individual erythrocytes in normal and abnormal blood. Br. J. Haematol. 28, 89–102, 1974 PubMedCrossRefGoogle Scholar
  18. 18.
    JOPE, E.M.: The ultraviolet spectral absorption of haemoglobins inside and outside the red cell. In: ROUGHTON, F.I.W., KENDREW, J.C., eds., Haemaglobin. London, Butterworths, 1949, pp. 205–219Google Scholar
  19. 19.
    LAGERLOF, B., THORELL, B., AKERMAN, L.: Heme and dry mass formation during red cell development. Exp. Cell Res. 10, 752–754, 1956 PubMedCrossRefGoogle Scholar
  20. 20.
    NATHAN, R., SELZER, R.H.: Digital video data handling: Mars, the moon and men. In: RAMSEY, D.M., ed., Image Processing in Biological Science. Berkeley, California, University of California Press, 1968, pp. 177–210Google Scholar
  21. 21.
    NILSSON, N.J.: Learning Machines. New York, McGraw-Hill, 1965 Google Scholar
  22. 22.
    PONDER, E., BARRETO, D.: The variation in the corpuscular hemoglobin concentration in the human red cell, as measured by densitometry. J. Gen. Physiol. 39, 23–29, 1955 PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Price-Jones, C.: Red Blood Cell Diameters. London, Oxford Medical 1933 Google Scholar
  24. 24.
    Ross, D., BESSIS, M.: On the proper use of the Soret band for hemoglobin detection in erythrocytic cells. Blood Cells 4, 361, 1978 PubMedGoogle Scholar
  25. 25.
    ROSENFELD, A.: Picture Processing by Computer. RHEINBOLDT, W., ed. London, Academic Press, 1969 Google Scholar
  26. 26.
    SORET, J.L.: Recherche sur l’absorption des rayons ultra-violets par diverses substances. Arch. Sci. Phys. Nat., 61, 322, 1878Google Scholar
  27. 27.
    WINTROBE, N.M.: The direct calculation of the volume and hemoglobin content of the erythrocyte. Am. J. Clin. Pathol. 1, 147–165, 1931 Google Scholar
  28. 28.
    WINTROBE, M.M.: The size and hemoglobin content of the erythrocyte. J. Lab. Clin. Med. 17, 899–912, 1932 Google Scholar
  29. 29.
    Wintrobe, M.M.: The erythrocyte in man. Medicine 9, 195–255, 1930 CrossRefGoogle Scholar
  30. 30.
    Wintrobe, M.M.: Anemia. Arch. Intern. Med. 54, 256–280, 1934CrossRefGoogle Scholar
  31. 31.
    WINTROBE, M.M.: Clinical Hematology, 7th edn. Philadelphia, Lea and Febiger, 1974, p. 542Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • James W. Bacus
    • 1
  1. 1.Medical Automation Research UnitRush-Presbyterian-St. Luke’s Medical CenterChicagoUSA

Personalised recommendations