Advertisement

X-Ray Computed Tomography

  • G. Salamon
  • J. Saudinos
Conference paper

Abstract

Matter is made of elementary particles consisting of a nucleus composed of protons and neutrons surrounded by electrons. The protons are hydrogen nuclei with a positive charge and their number determines the atomic number. The neutrons, which have no electric charge, form with the protons the nucleons which determine the atomic mass. Electrons are negative elementary particles gravitating around the nucleus on concentric orbits with a liaison energy which is higher as the orbit nears the nucleus. The absorption of X-ray depends on the energy of the beam. Schematically, an incident-photon can be totally absorbed and drive out an electron : this is the photo-electric interaction. The interaction between the incident-photon and the electron results in the emission of a diffused photon as the incident electron is shifted. This is the Compton interaction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allemand R., Laval M.: Les méthodes de détection en tomographie par rayons X. Colloque sur les Techniques tomographiques par rayons X et par émetteurs gamma et positrons. Grenoble (1978)Google Scholar
  2. 2.
    Brooks A.: A quantitative theory of the Hounsfield unit and its application to dual energy scanning. Journal of Computer Assisted Tomography (Computed Tomography) 1, 4 (1977)Google Scholar
  3. 3.
    Dubai L. and Wiggli U.: Tomochemistry of the brain. Journal of Computer Assisted Tomography (Computed Tomography), 1, 3 (1977)Google Scholar
  4. 4.
    Gado M. Eichling J. Currie M.: Quantitatige aspects of CT images. Presented CT conference — San Francisco, jan. (1977)Google Scholar
  5. 5.
    Garderet Ph.: Algorithmes de reconstruction de l’image à partir de projections. Colloque sur les techniques tomographiques par rayons X et par émetteurs gamma et positrons. Grenoble (1978)Google Scholar
  6. 6.
    Hounsfield G.N.: Computerized transverse axial scanning (tomography) Part. I. Description of system. Br. J. Radiol. 46: 1016–1022 (1973)PubMedCrossRefGoogle Scholar
  7. 7.
    McCullough C.: Photon attenuation in computed tomography. Medical Physics, vol. 2, n° 6, Nov/Dec. (1975)Google Scholar
  8. 8.
    Phelps M. E., Gado M. H. and Hoffman E. J.: Correlation of effective atomic number and electron density with attenuation coefficients measured with polychromatic Xrays. Radiology, 117, 585–588,(dec.1975)PubMedGoogle Scholar
  9. 9.
    Phelps M. E., Hoffman E. J., Ter-Pogossian M. M.: Attenuation coefficients of various body tissues, fluids, and lesions at photon energies of 18 to 136 keV. Radiology, 117: 573–583, (dec. 1975)PubMedGoogle Scholar
  10. l0.
    Tournier E.: Performances et dimensions d’un tomographe à rayons X. Colloque sur les techniques tomographiques par rayons X et par emetteurs gamma et positrons. Grenoble (1978)Google Scholar
  11. 11.
    Tsai C. M. and Cho Z. H.: Physics of contrast mechanism and averaging effect of linear attenuation coefficients in a computerized transverse axial tomography. (CTAT) transmission scanner. Phys. Med. Biol, vol. 21, n° 4, 544–559 (1976)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • G. Salamon
  • J. Saudinos

There are no affiliations available

Personalised recommendations