Theoretical Aspects of Structure and Assembly of Viral Envelopes

  • Herbert A. Blough
  • John M. Tiffany
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 70)


Viruses which can be seen in the electron microscope to have a coherent envelope structure are all found to contain lipid, and this has in the past been used as a means of classifying viruses, secondary to the type of nucleic acid they contain (Cooper, 1961). Another common feature which these viruses have more recently been found to possess is carbohydrate (other than that in their nucleic acid), and in all cases so far studied their distribution has been found to be asymmetric—the glycoproteins being found only in the exterior of the viral coat. The envelope may therefore be defined as a protective lipoprotein container for the genetic material, bearing, embedded in its surface, glycoproteins and glycolipids responsible for cell surface recognition of the virus and for the preliminary stages of infection (attachment and penetration). The virus is generally sensitive to agents such as detergents or lipid solvents, which disrupt the lipid region of the envelope. Virus assembly generally occurs at a specific cell membrane, where virally-specified materials are incorporated into the membrane to begin forming the envelope, followed by formation of a bud which eventually surrounds the viral core material.


Influenza Virus Newcastle Disease Virus Rabies Virus Viral Envelope Vesicular Stomatitis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aoki, T., Boyse, E. A., Old, D. T., Harven, E. De, Hammerling, U., Wood, H. A.: G (Gross) and H-2 cell-surface antigens: Location on Gross leukemia cells by electron microscopy with visually labelled antibody. Proc. nat. Acad. Sci. (Wash.) 65, 569–576 (1970)Google Scholar
  2. Bachi, T., Gerhard, W., Lindenmann, J., Muhlethaler, K.: Morphogenesis of influenza virus in Ehrlich ascites tumor cells as revealed by thin-sectioning and freeze-etching. J. Virol. 4, 769–776 (1969)PubMedGoogle Scholar
  3. Bachi, T., Howe, C.: Morphogenesis and ultrastructure of respiratory syncytial virus. J.Virol. 12, 1173–1180 (1973)PubMedGoogle Scholar
  4. Bancroft, J. B., Hills, G. J., Markham, R.: A study of the self-assembly process in a small spherical virus. Formation of organized structures from protein subunits in vitro. Virology 31, 354–379 (1967)PubMedGoogle Scholar
  5. Ben-Porat, T., Kaplan, A. S.: Studies on the biogenesis of herpesvirus envelope. Nature (Lond.) 235, 165–166 (1972)Google Scholar
  6. Bikel, I., Knight, C. A.: Differential action of Aspergillus glycosidases on the hemag-glutinating and neuraminidase activities of influenza and Newcastle disease viruses. Virology 49, 326–332 (1972)PubMedGoogle Scholar
  7. Blough, H. A.: The role of the surface state in the morphogenesis of influenza virus filaments. Virology 19, 112–114 (1963a)PubMedGoogle Scholar
  8. Blough, H. A.: The effect of vitamin A alcohol on the morphology of myxoviruses. I. The production and comparison of artificially produced filamentous virus. Virology 19, 349–358 (1963b)PubMedGoogle Scholar
  9. Blough, H. A.: Role of the surface state in the development of myxoviruses. In: Ciba Symposium, Cellular Biology of Myxovirus infections, G. W. Wolstenholme and J. Knight (eds.), p. 120–143-London: J. & A. Churchill 1964Google Scholar
  10. Blough, H. A.: Studies on the structure of influenza virus envelope. Bull. Wld. Hlth. Org. 41, 487–488 (1969)Google Scholar
  11. Blough, H. A.: Fatty acid composition of individual phospholipids of influenza virus. J. gen. Virol. 12, 317–320 (1971)PubMedGoogle Scholar
  12. Blough, H. A.: The effect of chronic viral infections on the synthesis and turnover of lipids in cultured animal cells. Ninth Intl. Cong. Biochem. P407 (1973)Google Scholar
  13. Blough, H. A.: New lipids incorporated into the membrane of influenza virus. Nature (Lond.) 251, 333–335 (1974)Google Scholar
  14. Blough, H. A., Gallaher, W. R., Weinstein, D. B.: Viral lipids: Host cell biosynthetic parameters. In: Membrane mediated information, P. W. Kent (ed.), 1, p. 183–199. Lancaster: Medical & Technical Publishing Co. 1973Google Scholar
  15. Blough, H. A., Lawson, D. E. M.: The lipids of paramyxoviruses: a comparative study of Sendai and Newcastle disease viruses. Virology 36, 286–292 (1968)PubMedGoogle Scholar
  16. Blough, H. A., Merlie, J. P.: The lipids of incomplete influenza virus. Virology 40, 685–692 (1970)PubMedGoogle Scholar
  17. Blough, H. A., Merlie, J. P., Tiffany, J. M.: The fatty acid composition of incomplete influenza virus. Biochem. biophys. Res. Commun. 34, 831–834 (1969)PubMedGoogle Scholar
  18. Blough, H. A., Tiffany, J. M.: Incorporation of branched-chain fatty acids into myxoviruses. Proc. nat. Acad. Sci. (Wash.) 62, 242–247 (1969)Google Scholar
  19. Blough, H. A., Tiffany, J. M.: Lipids in viruses. Advanc. Lipid Res. 11, 267–339 (1973)Google Scholar
  20. Blough, H. A., Weinstein, D. B.: Effect of influenza virus infection on lipid metabolism of chick embryo fibroblasts. In: Biology of the fibroblast, E. Kulonen and J. PIK-Karainen (eds.), p. 303–308. London: Academic Press 1973Google Scholar
  21. Blough, H. A., Weinstein, D. B., Lawson, D. E. M., Kodicek, E.: The effect of vitamin A on myxoviruses. II. Alterations in the lipids of influenza virus. Virology 33, 459–466 (1967)PubMedGoogle Scholar
  22. Bolognesi, D. M., Luftig, R., Shaper, J. H.: Localization of RNA Tumor virus polypeptides. I. Isolation of further virus substructures. Virology 56, 549–564 (1973)PubMedGoogle Scholar
  23. Brady, R. O., Fishman, P. H.: Alterations in membrane glycolipids in tumorigenic virus-transformed cell lines. In: Membrane mediated information, P. W. KENT (ed.), 1, p. 18–63. Lancaster: Medical & Technical Publishing Co. 1973Google Scholar
  24. Branton, D.: Membrane structure. Ann. Rev. Plant Physiol. 20, 209–238 (1969)Google Scholar
  25. Bretscher, M. S.: Human erythrocyte membranes: specific labelling of surface proteins. J. molec. Biol. 58, 775–781 (1971)PubMedGoogle Scholar
  26. Brown, D. T., Waite, M. R. F., Pfefferkorn, E. R.: Morphology and morphogenesis of Sindbis virus as seen with freeze-etching techniques. J. Virol. 10, 524–536 (1972)PubMedGoogle Scholar
  27. Cacam, J. F., Eylar, E. H.: Glycoprotein biosynthesis: Purification and characterization of a glycoprotein: galactosyl transferase from Ehrlich ascites tumor cell membranes. Arch. Biochem. Biophys. 137, 315–323 (1970)Google Scholar
  28. Cartwright, B., Smale, C. J., Brown, F., Hull, R.: Model for vesicular stomatitis virus. J. Virol. 10, 256–260 (1972)PubMedGoogle Scholar
  29. Cartwright, B., Talbot, P., Brown, F.: The proteins of biologically active subunits of vesicular stomatitis virus. J. gen. Virol. 7, 267–272 (1970)PubMedGoogle Scholar
  30. Choppin, P. W., Compans, R. W., Scheid, A., Mcsharry, J. J., Lazarowitz, S. G.: Structure and assembly of viral membranes. In: Membrane research, C. F. Fox (ed.), p. 163–185. London-New York: Academic Press 1972Google Scholar
  31. Chothia, C.: Hydrophobic bonding and accessible surface area in proteins. Nature (Lond.) 248, 338–339 (1974)Google Scholar
  32. Compans, R. W., Dimmock, N. J.: An electron microscope study of single-cycle infection of chick embryo fibroblasts by influenza virus. Virology 39, 499–515 (1969)PubMedGoogle Scholar
  33. Compans, R. W., Klenk, H.-D., Caliguiri, L. A., Choppin, P. W.: Influenza virus proteins. I. Analysis of polypeptides of the virion and identification of spike glycoproteins. Virology 42, 880–889 (1970)PubMedGoogle Scholar
  34. Cooper, P. D.: A chemical basis for the classification of animal viruses. Nature (Lond.) 190, 302–305 (1961)Google Scholar
  35. Courtney, R. J., Steiner, S. M., Benyesh-Melnick, M.: Effect of 2-deoxy-D-glucose on Herpes simplex virus replication. Virology 52, 447–455 (1973)PubMedGoogle Scholar
  36. Crick, J., Brown, F.: In: The biology of large RNA viruses, R. D. Barry and B. W. J. Mahy (eds.), p. 133. New York: Academic Press 1970Google Scholar
  37. David, A. E.: Lipid composition of Sindbis virus. Virology 46, 711–720 (1971)PubMedGoogle Scholar
  38. Deamer, D. W., Branton, D.: Fracture planes in an ice-bilayer model membrane system. Science 158, 655–657 (1967)PubMedGoogle Scholar
  39. Defrene, A., Louisot, P.: Glycoprotein biosynthesis in animals infected with a myxo-virus. II. Study of physicochemical parameters of liver AT-acetyl-glucosaminyl transferase. Int. J. Biochem. 4, 249–258 (1973)Google Scholar
  40. Dowdle, W. R., Downie, J. C., Laver, W. G.: Inhibition of virus release by antibodies to surface antigens of influenza viruses. J. Virol. 13, 269–275 (1974)PubMedGoogle Scholar
  41. Froger, C., Louisot, P.: Comportement des mannosytransferases microsomiques dans les cellules porteuses d’une infection a Arbovirus. C. R. Acad. Sci. (Paris) 274, 737–740 (1972a)Google Scholar
  42. Froger, C., Louisot, P.: Glycoprotein synthesis in arbovirus-infected cells. II. Study of microsomic mannosyl transferase activity. Int. J. Biochem. 3, 613–622 (1972b)Google Scholar
  43. Gahmberg, C. G., Simons, K., Renkonen, O., Kaariainen, L.: Exposure of proteins and lipids in the Semliki Forest virus membrane. Virology 50, 259–262 (1972a)PubMedGoogle Scholar
  44. Gahmberg, C. G., Utermann, G., Simons, K.: The membrane proteins of Semliki Forest virus have a hydrophobic part attached to the viral membrane. FEBS Letters 28, 179–182 (1972b)PubMedGoogle Scholar
  45. Gallaher, W. R., Blough, H. A.: Syntheses and turnover of lipids in monolayer cultures of BHK-21 cells. Arch. Biochem. Biophys. (in press)Google Scholar
  46. Gallaher, W. R., Levitan, D. B., Blough, H. A.: Effect of 2-deoxy-D-glucose on cell fusion induced by Newcastle disease and Herpes simplex viruses. Virology 55, 193–201 (1973a)PubMedGoogle Scholar
  47. Gallaher, W. R., Weinstein, D. B., Blough, H. A.: Rapid turnover of principal phospholipids in BHK-21 cells. Biochem. biophys. Res. Commun. 52, 1252–1256 (1973b)PubMedGoogle Scholar
  48. Garon, C. F., Moss, B.: Glycoprotein synthesis in cells infected with vaccinia virus. II. A glycoprotein component of the virion. Virology 46, 233–246 (1971)PubMedGoogle Scholar
  49. Green, D. E., Perdue, J. F.: Membranes as expressions of repeating units. Proc. nat. Acad. Sci. (Wash.) 55, 1295–1302 (1966)Google Scholar
  50. Gregoriades, A.: The membrane protein of influenza virus: extraction from virus and infected cell with acidic chloroform-methanol. Virology 54, 369–383 (1973)PubMedGoogle Scholar
  51. Grimes, W. J., Burge, B. W.: Modification of Sindbis virus glycoprotein by host-specified glycosyl transferases. J.Virol. 7, 309–313 (1971)PubMedGoogle Scholar
  52. Grimley, P. M., Friedman, R. M.: Development of Semliki Forest virus in mouse brain: an electron microscopic study. Exp. molec. Path. 12, 1–13 (1970)PubMedGoogle Scholar
  53. Hagopian, A., Bosmann, H. B., Eylar, E. H.: Glycoprotein biosynthesis: the localization of polypeptidyl: N-acetylgalactosaminyl, collagen: glucosyl, and glycoprotein: galactosyl transferases in HeLa cell membrane fractions. Arch. Biochem. Biophys. 128, 387–396 (1968)PubMedGoogle Scholar
  54. Harrison, S. C., Caspar, D. L. D., Camerini-Otero, R. D., Franklin, R. M.: Lipid and protein arrangement in bacteriophage PM2. Nature (Lond.) New Biol. 229, 197–201 (1971a)Google Scholar
  55. Harrison, S. C., David, A., Jumblatt, J., Darnell, J. E.: Lipid and protein organization in Sindbis virus. J. molec. Biol. 60, 523–528 (1971b)Google Scholar
  56. Haslam, E. A., Hampson, A. W., Radiskevics, I., White, D. O.: The polypeptides of influenza virus. III. Identification of the hemagglutinin, neuraminidase and nucleo-capsid proteins. Virology 42, 566–575 (1970)PubMedGoogle Scholar
  57. Hayman, M. J., Skehel, J. J., Crumpton, M. J.: Purification of virus glycoproteins by affinity chromatography using Lens culinaris phytohemagglutinin. FEBS Letters 29, 185–188 (1973)PubMedGoogle Scholar
  58. Heine, J. W., Roizman, B.: Proteins specified by Herpes simplex virus. IV. Contiguity of host and viral proteins in the plasma membrane of infected cells. J. Virol. 11, 810–813 (1973)PubMedGoogle Scholar
  59. Hirano, H., Parkhouse, B., Nicolson, G. L., Lennox, E. S., Singer, S. J.: Distribution of saccharide residues on membrane fragments from a myeloma cell homo-genate: its implications for membrane biogenesis. Proc. nat. Acad. Sci. (Wash.) 69, 2945–2949 (1972)Google Scholar
  60. Holland, J. J., Kiehn, E. D.: Influenza virus effects on cell membrane proteins. Science 167, 202–205 (1970)PubMedGoogle Scholar
  61. Homma, M., Tamagawa, S.: Restoration of the fusion activity of L cell-borne Sendai virus by trypsin. J. gen. Virol. 19, 423–426 (1973)PubMedGoogle Scholar
  62. Hosaka, Y., Shimizu, Y. K.: Artificial assembly of envelope particles of HVJ (Sendai virus). I. Assembly of hemolytic and fusion factors from envelopes solubilized by Nonidet P40. Virology 49, 627–639 (1972a)PubMedGoogle Scholar
  63. Hosaka, Y., Shimizu, Y. K.: Artificial assembly of envelope particles of HVJ (Sendai virus). II. Lipid components for formation of the active hemolysin. Virology 49, 640–646 (1972b)PubMedGoogle Scholar
  64. Howatson, A. F.: Vesicular stomatitis and related viruses. Advanc. Virus Res. 16, 195–256 (1970)Google Scholar
  65. Hoyle, L., Horne, R. W., Waterson, A. P.: The structure and composition of the myxoviruses. II. Components released from the influenza virus particle by ether. Virology 13, 448–459 (1961)PubMedGoogle Scholar
  66. Hubbell, W. L., Mcconnell, H. M.: Spin label studies of the excitable membranes of nerve and muscle. Proc. nat. Acad. Sci. (Wash.) 61, 12–16 (1968)Google Scholar
  67. Hubbell, W. L., Metcalfe, J. C., Metcalfe, S. M., Mcconnell, H. M.: The interaction of small molecules with spin-labelled erythrocyte membrane. Biochim. biophys. Acta (Amst.) 219, 415–427 (1970)Google Scholar
  68. Israelachvili, J. N.: Theoretical considerations on the asymmetrical distribution of charged phospholipid molecules on the inner and outer layers of curved bilayer membranes. Biochim. biophys. Acta (Amst.) 323, 659–663 (1973)Google Scholar
  69. Ji, T. H., Benson, A. A.: Association of lipids and proteins in chloroplast lamellar membrane. Biochim. biophys. Acta (Amst.) 150, 686–693 (1968)Google Scholar
  70. Jost, P. C., Griffith, O. H., Capaldi, R. A., Vanderkooi, G.: Evidence for boundary lipid in membranes. Proc. nat. Acad. Sci. (Wash.) 70, 480–484 (1973)Google Scholar
  71. Kaluza, G., Scholtissek, C., Rott, R.: Inhibition of the multiplication of enveloped RNA-viruses by glucosamine and 2-deoxy-D-glucose. J. gen. Virol. 14, 251–259 (1972)PubMedGoogle Scholar
  72. Kang, C. Y., Prevec, L.: Proteins of vesicular stomatitis virus. II. Immunological comparisons of viral antigens. J. Virol. 6, 20–27 (1970)PubMedGoogle Scholar
  73. Kates,M., Allison, A. C., Tyrrell, D. A. J., James, A. T.: Lipids of influenza virus and their relation to those of host cells. Biochim. biophys. Acta (Amst.) 52, 455–466 (1961)Google Scholar
  74. Katz, E., Margalith, E.: Location of vaccinia virus structural polypeptides on the surface of the virus particle. J. gen. Virol. 18, 381–384 (1973)PubMedGoogle Scholar
  75. Katz, E., Moss, B.: Formation of a vaccinia virus structural polypeptide from a higher molecular weight precursor: inhibition by rifampicin. Proc. nat. Acad. Sci. (Wash.) 66, 677–684 (1970)Google Scholar
  76. Kauzmann, W.: Some factors in the interpretation of protein denaturation. Advanc. Protein Chem. 14, 1–63 (1959)Google Scholar
  77. Kendal, A. P., Apostolov, K., Belyavin, G.: The effect of protease treatment on the morphology of influenza A, B and C viruses. J. gen. Virol. 5, 141–143 (1969)PubMedGoogle Scholar
  78. Kingsbury, D. W.: Paramyxovirus replication. Curr. Topics Microbiol, and Immunol. 59, 1–34 (1972)Google Scholar
  79. Klenk, H.-D.: Glycoproteins and glycolipids in viral envelopes. IN: Membrane mediated information (P. W. Kent, ed.), vol. 1, p. 200–211. Lancaster: Medical and Technical Publishing Co. 1973Google Scholar
  80. Klenk, H.-D., Compans, R. W., Choppin, P. W.: An electron microscopic study of the presence or absence of neuraminic acid in enveloped viruses. Virology 42, 1158–1162 (1970)PubMedGoogle Scholar
  81. Klenk, H.-D., Choppin, P. W.: Glycosphingolipids of plasma membranes of cultured cells and an enveloped virus (SV5) grown in these cells. Proc. nat. Acad. Sci. (Wash.) 66, 57–64 (1970)Google Scholar
  82. Klenk, H.-D., Rott, R.: Formation of influenza virus proteins. J. Virol. 11, 823–831 (1973)PubMedGoogle Scholar
  83. Klenk, H.-D., Rott, R., Becht, H.: On the structure of the influenza virus envelope. Virology 47, 579–591 (1972)PubMedGoogle Scholar
  84. Kornberg, R. D., Mcconnell, H. M.: Lateral diffusion of phospholipids in a vesicle membrane. Proc. nat. Acad. Sci. (Wash.) 68, 2564–2568 (1971)Google Scholar
  85. Kuwert, E., Böhme, U., Lickfeld, K. G., Böhme, W.: Zur Oberflächenstruktur des Tollwutvirion (TWV). Zbl. Bakt. I. Abt. Orig. A 219, 39–45 (1972)Google Scholar
  86. Lafferty, K. J.: The interaction between virus and antibody. II. Mechanism of the reaction. Virology 21, 76–90 (1963)PubMedGoogle Scholar
  87. Landsberger, F. R., Compans, R. W., Choppin, P. W., Lenard, J.: Organisation of the lipid phase in viral membranes. Effects of independent variation of the lipid and the protein composition. Biochemistry (Wash.) 12, 4498–4502 (1973)Google Scholar
  88. Landsberger, F. R., Lenard, J., Paxton, J., Compans, R. W.: Spin-label electron spin resonance study of the lipid-containing membrane of influenza virus. Proc. nat. Acad. Sci. (Wash.) 68, 2579–2583 (1971)Google Scholar
  89. Laver, W. G.: Structural studies on the protein subunits from three strains of influenza virus. J. molec. Biol. 9, 109–124 (1964)PubMedGoogle Scholar
  90. Laver, W. G.: Separation of two polypeptide chains from the hemagglutinin subunit of influenza virus. Virology 45, 275–288 (1971)PubMedGoogle Scholar
  91. Laver, W. G.: The polypeptides of influenza viruses. Advanc. Virus Res. 18, 57–103 (1973)Google Scholar
  92. Laver, W. G., Baker, N.: Amino acid composition of polypeptides from influenza virus particles. J. gen. Virol. 17, 61–67 (1972)PubMedGoogle Scholar
  93. Laver, W. G., Valentine, R. C.: Morphology of the isolated hemagglutinin and neuraminidase subunits of influenza virus. Virology 38, 105–119 (1969)PubMedGoogle Scholar
  94. Lazarowitz, S. G., Compans, R. W., Choppin, P. W.: Influenza virus structural and non-structural proteins in infected cells and their plasma membranes. Virology 46, 830–843 (1971)PubMedGoogle Scholar
  95. Lazarowitz, S. G., Goldberg, A. R., Choppin, P. W.: Proteolytic cleavage by plasmin of the HA polypeptide of influenza virus: host cell activation of serum plasminogen. Virology 56, 172–180 (1973)PubMedGoogle Scholar
  96. Lenard, J., Compans, R. W.: The membrane structure of lipid-containing viruses. Biochim. biophys. Acta (Amst.) 344, 51–94 (1974)Google Scholar
  97. Lenard, J., Wong, C. Y., Compans, R. W.: Association of internal membrane protein with the lipid bilayer in influenza virus. Biochim. biophys. Acta (Amst.) 332, 341–349 (1974)Google Scholar
  98. Lesslauer, W., Cain, J. E., Blasie, J. K.: X-ray diffraction studies of lecithin bi-molecular lipid leaflets with incorporated fluorescent probes. Proc. nat. Acad. Sci. (Wash.) 69, 1499–1503 (1972)Google Scholar
  99. Levitan, D. B., Blough, H. A.: Preliminary biochemical characterization of the herpesvirus fusion factor(s). Virology (in press)Google Scholar
  100. Mcsharry, J. J., Compans, R. W., Choppin, P. W.: Proteins of vesicular stomatitis virus and of phenotypically mixed vesicular stomatitis virus and simian virus 5 virions. J. Virol. 8, 722–729 (1971)PubMedGoogle Scholar
  101. Mcsharry, J. J., Compans, R. W., Lackland, H., Choppin, P. W.: Isolation of viral membrane proteins, p. 215-Abstr. 72nd Ann. Mtg. Amer. Soc. Microb. Phila., 1972Google Scholar
  102. Mcsharry, J. J., Wagner, R. R.: Lipid composition of purified vesicular stomatitis viruses. J. Virol. 7, 59–70 (1971)PubMedGoogle Scholar
  103. Melchers, F.: Biosynthesis, intracellular transport, and secretion of immunoglobulins. Effect of 2-deoxy-D-glucose in tumor plasma cells producing and secreting immuno-globulin Gv Biochemistry (Wash.) 12, 1471–1476 (1973)Google Scholar
  104. Michaelson, D. M., Horwitz, A. F., Klein, M.: Transbilayer asymmetry and surface homogeneity of mixed phospholipids in cosonicated vesicles. Biochemistry (Wash.) 12, 2637–2645 (1973)Google Scholar
  105. Mora, P. T., Cumar, F. A., Brady, R. O.: A common biochemical change in SV40 and polyoma virus transformed mouse cells coupled to control of cell growth in culture. Virology 46, 60–72 (1971)PubMedGoogle Scholar
  106. Mudd, J. A., Summers, D. F.: Protein synthesis in vesicular stomatitis virus infected HeLa cells. Virology 42, 328–340 (1970)PubMedGoogle Scholar
  107. Nermut, M. V.: Further investigation on the fine structure of influenza virus. J. gen. Virol. 17, 317–331 (1972)PubMedGoogle Scholar
  108. Nermut, M. V., Frank, H.: Fine structure of influenza A2 (Singapore) as revealed by negative staining, freeze-drying and freeze-etching. J. gen. Virol. 10, 37–51 (1971)PubMedGoogle Scholar
  109. Nermut, M. V., Frank, H., Schafer, W.: Properties of mouse leukemia viruses. III. Electron microscopic appearance as revealed after conventional preparation techniques as well as freeze-drying and freeze-etching. Virology 49, 345–358 (1972)PubMedGoogle Scholar
  110. Neurath, A. R., Vernon, S. K., Dobkin, M. B., Rubin, B. A.: Characteristics of subviral components resulting from treatment of rabies virus with tri(n-butyl) phosphate. J. gen. Virol. 14, 33–48 (1972)PubMedGoogle Scholar
  111. Oda, K., Joklik, W. K.: Hybridization and sedimentation studies on “early” and “late” vaccinia messenger RNA. J. molec. Biol. 27, 395–419 (1967)PubMedGoogle Scholar
  112. Ohki, S., Aono, O.: Phospholipid bilayer-micelle transformation. J. Colloid and Interface Sci. 32, 270–281 (1970)Google Scholar
  113. Okada, Y., Kim, J.: Interaction of concanavalin A with enveloped viruses and host cells. Virology 50, 507–515 (1972)PubMedGoogle Scholar
  114. Pfefferkorn, E. R., Hunter, H. S.: The source of the ribonucleic acid and phospholipid of Sindbis virus. Virology 20, 446–456 (1963)PubMedGoogle Scholar
  115. Phillips, D. R., Morrison, M.: Exposed protein on the intact human erythrocyte. Biochemistry (Wash.) 10, 1766–1771 (1971)Google Scholar
  116. Pinto Da Silva, P., Branton, D.: Membrane splitting in freeze-etching. J. Cell Biol. 45, 598–605 (1970)PubMedGoogle Scholar
  117. Printz, P., Wagner, R. R.: Temperature-sensitive mutants of vesicular stomatitis virus: synthesis of virus-specific proteins. J. Virol. 7, 651–662 (1971)PubMedGoogle Scholar
  118. Ray, E. K., Blough, H. A.: Biosynthesis and transport of herpesvirus glycoproteins and glycolipids., p. 202 Abstr. 74th Ann. Mtg. Amer. Soc. Microbiol. Chicago, 1974Google Scholar
  119. Reginster, M., Calberg-Bacq, C.-M.: Further observations on the effects of caseinase C on the envelope of influenza and Newcastle disease viruses. J. Ultrastruct. Res. 23, 144–152 (1968)PubMedGoogle Scholar
  120. Reimer, C. B., Baker, R. S., Newlin, T. E., Havens, M. L.: Influenza virus purification with the zonal ultracentrifuge. Science 152, 1379–1381 (1966)PubMedGoogle Scholar
  121. Rudy, B., Gitler, C.: Microviscosity of the cell membrane. Biochim. biophys. Acta (Amst.) 288, 231–236 (1972)Google Scholar
  122. Salem, L.: Attractive forces between macromolecular chains of biological importance. Nature (Lond.) 193, 476–477 (1962a)Google Scholar
  123. Salem, L.: The role of long-range forces in the cohesion of lipoproteins. Canad. J. Biochem. 40, 1287–1298 (1962b)PubMedGoogle Scholar
  124. Sarov, I., Joklik, W. K.: Studies on the nature and location of the capsid polypeptides of vaccinia virions. Virology 50, 579–592 (1972)PubMedGoogle Scholar
  125. Scanu, A. M., Tardieu, A.: Temperature transitions of lipid mixtures containing cholesterol esters. Relevance to the structural problem of serum high density lipoprotein. Biochim. biophys. Acta (Amst.) 231, 170–174 (1971)Google Scholar
  126. Schaefer, R., Hinnen, R., Franklin, R. M.: Further observations on the structure of the lipid-containing bacteriophage PM2. Nature (Lond.) 248, 681–682 (1974)Google Scholar
  127. Scheid, A., Choppin, P. W.: Identification of biological activities of paramyxovirus glycoproteins. Activation of cell fusion, hemolysis, and infectivity by proteolytic cleavage of an inactive precursor protein of Sendai virus. Virology 57, 475–490 (1974)PubMedGoogle Scholar
  128. Schlesinger, M. J., Schlesinger, S., Bürge, B. W.: Identification of a second glycoprotein in Sindbis virus. Virology 47, 539–541 (1970)Google Scholar
  129. Schulze, I. T.: The structure of influenza virus. I. The polypeptides of the virion. Virology 42, 890–904 (1970)PubMedGoogle Scholar
  130. Schulze, I. T.: The structure of influenza virus. II. A model based on the morphology and composition of subviral proteins. Virology 47, 181–196 (1972)PubMedGoogle Scholar
  131. Schulze, I. T.: Structure of the influenza virion. Advanc. Virus Res. 18, 1–56 (1973)Google Scholar
  132. Sebring, E. D., Salzman, N. P.: Metabolic properties of early and late vaccinia virus messenger ribonucleic acid. J. Virol. 1, 550–558 (1967)PubMedGoogle Scholar
  133. Segrest, J. P., Jackson, R. L., Andrews, E. P., Marchesi, V. T.: Human erythrocyte membrane glycoprotein: a re-evaluation of the molecular weight as determined by SDS Polyacrylamide gel electrophoresis. Biochem. biophys. Res. Commun. 44, 390–395 (1971)Google Scholar
  134. Seto, J. T., Chang, F. S.: Functional significance of sialidase during influenza virus multiplication: an electron microscope study. J.Virol. 4, 58–66 (1969)PubMedGoogle Scholar
  135. Simons, K., Keränen, S., Kääriäinen, L.: Identification of a precursor for one of the Semliki Forest virus membrane proteins. FEBS Letters 29, 87–91 (1973)PubMedGoogle Scholar
  136. Singer, S. J., Nicolson, G. L.: The fluid mosaic model of the structure of cell membranes. Science 175, 720–731 (1972)PubMedGoogle Scholar
  137. Skehel, J. J.: Estimations of the molecular weight of the influenza virus genome. J. gen. Virol. 11, 103–109 (1971)PubMedGoogle Scholar
  138. Skehel, J. J., Schild, G. C.: The polypeptide composition of influenza A viruses. Virology 44, 396–408 (1971)PubMedGoogle Scholar
  139. Sokol, F., Clark, H. F.: Phosphoproteins, structural components of rhabdoviruses. Virology 52, 246–263 (1973)PubMedGoogle Scholar
  140. Sokol, F., Stancek, D., Koprowski, H.: Structural proteins of rabies virus. J. Virol. 7, 241–249 (1971)PubMedGoogle Scholar
  141. Spear, P. G., Roizman, B.: Proteins specified by Herpes simplex virus. V. Purification and structural proteins of the virus. J. Virol. 9, 143–159 (1972)PubMedGoogle Scholar
  142. Stanley, P., Crook, N. E., Streader, L. G., Davidson, B. E.: The polypeptides of influenza virus. VIII. Large-scale purification of the hemagglutinin. Virology 56, 640–645 (1973)PubMedGoogle Scholar
  143. Stanley, P., Haslam, E. A.: The polypeptides of influenza virus. V. Localization of polypeptides in the virion by iodination techniques. Virology 46, 764–773 (1971)PubMedGoogle Scholar
  144. Strand, M., August, J. T.: Protein kinase and phosphate acceptor proteins in Rauscher murine leukamia virus. Nature (Lond.) New Biol. 233, 137–140 (1971)Google Scholar
  145. Thompson, T. E., Sears, B.: Non-ideal mixing of phosphatidylcholine and cholesterol in single-walled bilayer vesicles. (Abstract.) Fed. Proc. 33, 1551 (1974)Google Scholar
  146. Tiffany, J. M., Blough, H. A.: Myxovirus envelope proteins: a directing influence on the fatty acids of membrane lipids. Science 163, 573–574 (1969a)PubMedGoogle Scholar
  147. Tiffany, J. M., Blough, H. A.: Fatty acid composition of three strains of Newcastle disease virus. Virology 37, 492–494 (1969b)PubMedGoogle Scholar
  148. Tiffany, J. M., Blough, H. A.: Models of structure of the envelope of influenza virus. Proc. nat. Acad. Sci. (Wash.) 65, 1015–1112 (1970a)Google Scholar
  149. Tiffany, J. M., Blough, H.A.: Estimation of the number of surface projections of myxo-and paramyxoviruses. Virology 41, 392–394 (1970b)PubMedGoogle Scholar
  150. Tremaine, J. H., Goldsack, D. E.: The structure of regular viruses in relation to their subunit amino acid composition. Virology 35, 227–237 (1968)PubMedGoogle Scholar
  151. Verkleij, A. J., Zwaal, R. F. A., Roelofsen, B., Comfurius, P., Kastelijh, D., Van Deenen, L. L. M.: The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim. biophys. Acta (Amst.) 323, 178–193 (1973)Google Scholar
  152. Vernon, S. K., Neurath, A. R., Rubin, B. A.: Electron microscopic studies on the structure of rabies virus. J. Ultrastruct. Res. 41, 29–42 (1972)PubMedGoogle Scholar
  153. Wagner, R. R., Prevec, L., Brown, F., Summers, D. F., Sokol, F., Macleod, R.: Classification of rhabdovirus proteins: a proposal. J.Virol. 10, 1228–1230 (1972)PubMedGoogle Scholar
  154. Waite, M. R., Brown, D. T., Pfefferkorn, E. R.: Inhibition of Sindbis virus release by media of low ionic strength: an electron microscope study. J. Virol. 10, 537–544 (1972)PubMedGoogle Scholar
  155. Weinstein, D. B., Blough, H. A.: Kinetics of incorporation of 32P into several cell lines and the inability to turn it over. Biochim. biophys. Acta (Amst.) (in press)Google Scholar
  156. Wildy, P.: Classification and nomenclature of viruses. Monogr. Virol. 5, 1–81 (1971)Google Scholar
  157. Wilkins, M. H. F., Blaurock, A. E., Engelman, D. M.: Bilayer structure in membranes. Nature (Lond.) New Biol. 230, 72–76 (1971)Google Scholar
  158. Wirtz, K. W., Zilversmit, D. B.: Exchange of phospholipids between liver mito-chondria and microsomes in vitro. J. biol. Chem. 243, 3596–3602 (1968)PubMedGoogle Scholar
  159. Wu, C.-W., Stryer, L.: Proximity relationships in rhodopsin. Proc. nat. Acad. Sci. (Wash.) 69, 1104–1108 (1972)Google Scholar
  160. Zingsheim, H. P.: Membrane structure and electron microscopy. The significance of physical problems and techniques (freeze-etching). Biochim. biophys. Acta (Amst.) 265, 339–366 (1972)Google Scholar
  161. Zwaal, R. F. A., Roelofsen, B., Comfurius, P., Van Deenen, L. L. M.: Complete purification and some properties of phospholipase C from Bacillus cereus. Biochim. biophys. Acta (Amst.) 233, 474–479 (1971)Google Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1975

Authors and Affiliations

  • Herbert A. Blough
  • John M. Tiffany
    • 1
  1. 1.Division of Biochemical Virology and Membrane Research, Scheie Eye InstituteUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations