• Kenichi Kanatani
Part of the Springer Series in Information Sciences book series (SSINF, volume 20)


This chapter describes what is meant by image understanding. We begin with the imaging geometry of perspective projection, and introduce the camera rotation transformation, which plays a central role in subsequent chapters. Then, we discuss two typical mathematical approaches to the three-dimensional (3D) recovery problem—the 3D Euclidean approach and the two-dimensional (2D) non-Euclidean approach. Finally, the organization of this book is described.


Image Plane Optical Flow Object Parameter Projective Transformation Perspective Projection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. D.H. Ballard, C. M. Brown. Computer Vision (Prentice-Hall, Englewood Cliffs, NJ 1982)Google Scholar
  2. R. Nevatia: Machine Perception (Prentice-Hall, Englewood Cliffs, NJ 1982)Google Scholar
  3. M. D. Levine: Vision in Man and Machine (McGraw-Hill, New York 1985)Google Scholar
  4. B. K. P. Horn: Robot Vision (MIT Press, Cambridge, MA 1986)Google Scholar
  5. Y. Shirai: Three-Dimensional Computer Vision (Springer, Berlin, Heidelberg 1987)CrossRefGoogle Scholar
  6. P. R. Cohen, E. A. Feigenbaum (eds.): The Handbook of Artificial Intelligence, Vol. 3 (Pitman, London 1982)zbMATHGoogle Scholar
  7. P. H. Winston: Artificial Intelligence, 2nd ed. (Addison-Wesley, Reading, MA 1984)zbMATHGoogle Scholar
  8. E. Charniak, D. McDermott: Introduction to Artificial Intelligence (Addison-Wesley, Reading, MA 1985)zbMATHGoogle Scholar
  9. P. H. Winston (ed.): The Psychology of Computer Vision (McGraw-Hill, New York 1975)Google Scholar
  10. A. R. Hanson, E. M. Riseman (eds.): Computer Vision Systems (Academic, New York 1978)Google Scholar
  11. S. Tanimoto, A. Klinger (eds.): Structured Computer Vision: Machine Perception through Hierarchical Computation Structures (Academic, New York 1980)Google Scholar
  12. J. M. Brady (ed.): Computer Vision (North-Holland, Amsterdam 1981)zbMATHGoogle Scholar
  13. J. Beck, B. Hope, A. Rosenfeld (eds.): Human and Machine Vision (Academic, New York 1983)Google Scholar
  14. T. S. Huang (ed.): Image Sequence Processing and Dynamic Scene Analysis, NATO ASI Ser., Ser. F, Vol. 2 (Springer, New York 1983)Google Scholar
  15. S. Ullman, W. Richards (eds.): Image Understanding 1984 (Ablex, Norwood, NJ 1984)Google Scholar
  16. A. Rosenfeld (ed.): Techniques for 3-D Machine Perception (North-Holland, Amsterdam 1986)zbMATHGoogle Scholar
  17. T. Kanade (ed.): Three-Dimensional Machine Vision (Kluwer Academic, Norwell, MA 1987)Google Scholar
  18. J. J. Gibson: The Ecological Approach to Visual Perception (Houghton Mifflin, Boston, MA 1979)Google Scholar
  19. S. Ullman: The Interpretation of Visual Motion (MIT Press, Cambridge, MA 1979)CrossRefGoogle Scholar
  20. D. Marr: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information (W. H. Freeman, San Francisco 1982)Google Scholar
  21. A. Rosenfeld, A. C. Kak: Digital Picture Processing, 2nd ed., Vols. 1,2 (Academic, Orlando, FL 1982)zbMATHGoogle Scholar
  22. K. Sugihara: Machine Interpretation of Line Drawings (MIT Press, Cambridge, MA 1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Kenichi Kanatani
    • 1
  1. 1.Department of Computer ScienceGunma University KiryuJapan

Personalised recommendations