Advertisement

Application of PIV to Turbulent Reacting Flows

  • L. Muñiz
  • R. E. Martinez
  • M. G. Mungal
Conference paper

Abstract

Particle Image Velocimetiy (PIV) is used to measure the instantaneous velocity fields in the near and far field of an axisymmetric nitrogen-diluted methane jet (Re = 6000) issuing into a co-flowing air stream. Velocity measurements are taken under reacting and non-reacting conditions to determine the effects of heat release on flow structure and mixing. In addition, velocity measurements are made at the base of a lifted methane flame (Re = 4200) to examine the velocity criteria for flame stabilization. In each case, the jet and co-flow are seeded with nominally 0.3μm alumina (Al2O3) particles to obtain planar, two-component (axial and radial) velocity data in the jet, flame zone and free stream. Measurement uncertainties are assessed for the current PIV configuration, and beam steering, image distortion and thermophoresis effects on reacting measurements are discussed.

Keywords

PIV Turbulent flames Lifted flames Thermophoresis Beam steering Image distortion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian R. J. (1991), “Particle-Imaging Techniques for Experimental Fluid Mechanics,” Annu. Rev. Fluid Mech., 23, 261.ADSCrossRefGoogle Scholar
  2. Driscoll, J. F., Sutkus, D. J., Roberts, W. L., Post, M. E. & Goss, L. P. (1993) “The Strain Exerted by a Vortex on a Flame — Determined from Velocity Field Images,” AAIA-93–0362, 31st Aerospace Sciences Meeting, Reno, NV, Jan. 1993.Google Scholar
  3. Everest, D., Driscoll, J. F. & Dahm, W. J. A. (1995), “Images of the 2-D Temperature Field and Temperature Gradients to Quantify Mixing Rates within a Non-premixed Turbulent Jet Flame,” Combustion and Flame, Vol 101, n. 1–2, 58.CrossRefGoogle Scholar
  4. Gomez, A. & Rosner, D. E. (1993), “Thermophoretic Effects on Particles in Counterflow Laminar Diffusion Flames,” Comb. Sci. & Tech., Vol 89, 335.CrossRefGoogle Scholar
  5. Holder, D. W. & North, R. J. (1956), Optical Methods for Examining the Flow in High-Speed Wind Tunnels: Part One – Schlieren Methods, AGARDograph, November 1956.Google Scholar
  6. Keane, R. D., Adrian, R. J. & Zhang, Y. (1995), “Super-resolution Particle Image Velocimetry,” Measurement Science & Technology, Vol 6, n. 6, 754.ADSCrossRefGoogle Scholar
  7. Keane, R. D. & Adrian, R. J. (1992), “Theory of Cross-Correlation Analysis of PIV Images,” Applied Scientific Research, Vol 49, 191.CrossRefGoogle Scholar
  8. Lourenco, L. M., Krothapalli, A. & Smith, C. A. (1989), “Particle Image Velocimetry,” Lecture Notes in Engineering 45, M. Gad-el-Hak (editor), Advances in Fluid Mechanics Measurements, Springer-Verlag, 127.CrossRefGoogle Scholar
  9. Mungal, M. G., Lourenco, L. M. & Krothapalli, A. (1994), “Instantaneous Velocity Measurements in Laminar and Turbulent Premixed Lames Using On- Line PIV,” Seventh International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 15.1.Google Scholar
  10. Mungal, M. G., Lourenco, L. M. & Krothapalli, A. (1995), “Instantaneous Velocity Measurements in Laminar and Turbulent Premixed Lames Using On- Line PIV,” Combust. Sci. and Tech., Vol 106, 239.CrossRefGoogle Scholar
  11. Muniz, L. & Mungal, M. G. (1995), “A PIV Investigation of Turbulent Diffusion Flames,” WSS/CI-95F-206, Western States Section of the Combustion Institute, Fall Meeting, Stanford, CA.Google Scholar
  12. Muniz, L. & Mungal, M. G. (1996a), “PIV Study of Lifted Jet-Diffusion Flames: Low-Speed Stabilization and Evidence for Triple Flames,” 26th Symp. (Int.) on Comb., The Combustion Institute, Work-in Progress Poster # 428.Google Scholar
  13. Muniz, L. & Mungal, M. G. (1996b), “Velocity Measurements in Lifted-Jet Diffusion Flames,” WSS/CI-96F-113, Western States Section of the Combustion Institute, Fall Meeting, Los Angeles, CA.Google Scholar
  14. Muniz, L. & Mungal, M. G. (1997), “Instantaneous Flame-Stabilization Velocities in Lifted Jet Diffusion Flames”, to appear in Combustion and Flame.Google Scholar
  15. Paone, N. (1994), “Velocity Measurements in Turbulent Premixed Flames: Development of a PIV Measurement System and Comparison with LDV,” Seventh International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, pl5.3.Google Scholar
  16. Post, M. E., Goss, L. P. & Brainard, L. F. (1991), “Two-Color Particle-Image Velocimetry in a Diffusion Flame,” Central States Section of the Combustion Institute, Spring Meeting, Nashville, TN.Google Scholar
  17. Reuss, D. L., Bardsley, M., Felton, P. G., Landreth, C. C. & Adrian, R. J. (1989), “Velocity, Vorticity, and Strain-Rate Ahead of the Flame Measured in an Engine Using Particle linage Velocimetry,” SAE Trans., Vol 99, n 3, 249.Google Scholar
  18. Ruetsch, G. R., Vervisch, L. & Liñän, A. (1995), “Effects of Heat Release on Triple Flames,” Physics of Fluids, Vol 7, n 6, 1447.ADSCrossRefGoogle Scholar
  19. Sung, C. J., Law, C. K. & Axelbaum, R. L. (1994), “Thermophoretic Effects on Seeding Particles in LDV Measurements of Flames,” Comb. Sci. & Tech., Vol 99, 119.CrossRefGoogle Scholar
  20. Takagi, T., Shin, H.-D. & Ishio, A. (1981), “Properties of Turbulence in Turbulent Diffusion Flames,” Combustion and Flame 40:121–140.CrossRefGoogle Scholar
  21. Westerweel, J., Draad, A. A., van der Hoeven, J.G. Th. & van Oord, J. (1996), “Measurement of Fully-Developed Pipe Flow with Digital Particle Image Velocimetry,” Experiments in Fluids, Vol 20, n 3, 165ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • L. Muñiz
    • 1
  • R. E. Martinez
    • 1
  • M. G. Mungal
    • 1
  1. 1.Department of Mechanical EngineeringStanford UniversityUSA

Personalised recommendations