LDV-Measurements on the Chaotic Behaviour in Wide Gap Spherical Couette Flow

  • P. Wulf
  • C. Fechtmann
  • C. Egbers
  • H. J. Rath
Conference paper


We report on a concurrent study of LDV-measurements on bifurcation scenario in rotating spherical Couette flow. As an example for a bifurcation scenario a complex route into chaos can be observed in the wide gap spherical Couette flow experimentally. By increasing the Reynolds number with the angular velocity of the driving inner sphere the flow bifurcates from laminar axisymmetric basic flow to the periodic motion of non-axisymmetric secondary spiral waves for relative large aspect ratios (Egbers, 1994). In the present study the relative wide gap width of ß = 0.50 is chosen. The spiral waves exist over a wide range of the Reynolds number. In this range a change in shape and periodicity can be detected by visualization with small aluminum flakes and also measured by Laser Doppler velocime- try (LDV-technique). At high Reynolds numbers, the flow undergoes a bifurcation to low-dimensional chaotic motion before it eventually becomes turbulent. The dynamic behaviour is discussed by spectral bifurcation diagrams, reconstructed attractors and their Lyapunov exponents as a quantitative parameter. These quantities are calculated from the measured LDV time series.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andereck, C.D., Liu, S.S. and Swinney, H.L. (1986): Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech., vol. 164, 155–183ADSCrossRefGoogle Scholar
  2. Belyaev, Yu.N., Monakhov, A.A., Scherbakov, S.A. and Yavorskaya, I.M. (1984): Some routes to turbulence in spherical Couette Flow, in: Kozlov, V.V. (ed.): Laminar-Turbulent Transition. IUTAM-Symp. Novosibirsk/USSR, SpringerGoogle Scholar
  3. Broomhead, D.S. & King, G.P. (1986): Physica D 20, 217ADSMathSciNetGoogle Scholar
  4. Bühler, K. (1985): Strömungsmechanische Instabilitäten zäher Medien im Kugelspalt. VDI-Berichte, Reihe7: Strömungstechnik Nr. 96Google Scholar
  5. Bühler, K. and Zierep, J. (1984): New secondary instabilities for high Re-number flow between two rotating spheres, in: Kozlov, V. V. (ed.): Laminar-Turbulent Transition. IUTAM-Symp. Novosibirsk/USSR, Springer, Berlin, Heidelberg, New York, TokyoGoogle Scholar
  6. Bühler, K. and Zierep, J. (1986): Dynamical instabilities and transition to turbulence in spherical gap flows, in: Comte-Bellot, G. and Mathieu, J.: Advances in turbulence. Proc. 1st Europ. Turb. Conf., Lyon, France, 1–4 July, Springer, Berlin, Heidelberg, NewYork, London, Paris, TokyoGoogle Scholar
  7. Buzug, Th.& Pfister, G (1992): Physical Review A 45, 10CrossRefGoogle Scholar
  8. Buzug, Th., V. Stamm, J. and Pfister, G. (1992): Fractal dimensions of strange attractors obtained from the Taylor-Couette experiment. Phys. A, 191, 559CrossRefGoogle Scholar
  9. Buzug, Th., v. Stamm, J. and Pfister, G. (1993): Characterization of period-doubling scenarios in Taylor- Couette flow. Physical Review E, 47, no. 2, 1054–1065ADSCrossRefGoogle Scholar
  10. Egbers, C. (1994): Zur Stabilität der Strömung im konzentrischen Kugelspalt. Dissertation, Universität BremenGoogle Scholar
  11. Egbers, C. and Rath, H.J. (1995): The existence of Taylor vortices and wide-gap instabilities in spherical Couette flow. Acta Mech. 111, 3–4, 125–140CrossRefGoogle Scholar
  12. Egbers, C. and Rath, H.J. (1996): Developments in Laser Techniques and Applications to Fluid Mechanics (Eds.: R.J. Adrian, D.F.G. Durao, F. Durst, M.V. Heitor, M. Maeda, J.H. Whitelaw), Springer,45–66CrossRefGoogle Scholar
  13. Fechtmann, C., Wulf, P., Egbers, C. & Rath, H.J.; 1996; LDA-Messungen zum chaotischen Verhalten der Strömung im konzentrischen Kugelspalt; Lasermethoden in der Strömungsmeßtechnik, 5. Fachtagung der GALA, 11.–13. Sept. Berlin, vol. V, pp 17.1–17.7Google Scholar
  14. Fenstermacher, P.R., Swinney, H.L. and Gollub, J.P. (1979): Dynamic instabilities and the transition to chaotic Taylor vortex flow. J. Fluid Mech., 94, part 1, 103–128ADSCrossRefGoogle Scholar
  15. Holzfuss, J. (1987): Doctoral thesis, Universität GöttingenGoogle Scholar
  16. Landau, L.D. (1944): On the problem of turbulence. C. R. Acad. Sci. USSR 44, 311zbMATHGoogle Scholar
  17. Liu, M., Blohm, C., Egbers, C., Wulf, P. & Rath, H. J.; 1996; Taylor vortices in wide spherical shells.; Phys. Rev. Lett., vol. 77, No. 2, pp 286–289ADSCrossRefGoogle Scholar
  18. Mullin, T. (1993): The nature of chaos, Oxford Science PublicationszbMATHGoogle Scholar
  19. Munson, B.R. and Menguturk, M. (1975): Viscous incompressible flow between concentric rotating spheres. Part 3: Linear stability and experiments. J. Fluid Mech., vol. 69, 705–719ADSCrossRefzbMATHGoogle Scholar
  20. Nakabayashi, K. and Tsuchida, Y. (1988): Spectral study of the laminar-turbulent transition in spherical Couette flow. J. Fluid Mech., vol. 194, 101–132ADSCrossRefGoogle Scholar
  21. Sawatzki, O. und Zierep, J. (1970): Das Stromfeld im Spaltzwischen zwei konzentrischenKugelflächen, von denen die innere rotiert. Acta Mech. 9, 13–35CrossRefGoogle Scholar
  22. v. Stamm, J., Buzug, Th. and Pfister, G. (1993): Frequency locking in axisymmetric Taylor Couette flow. Physical Review E., submittedGoogle Scholar
  23. Takens, F. (1980): Lecture Notes in Mathematics, 898, SpringerGoogle Scholar
  24. Taylor, G.J. (1923): Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. A223,289–293ADSGoogle Scholar
  25. Wimmer, M. (1981): Experiments on the stability of viscous flow between two concentric rotating spheres. J. Fluid Mech., vol.103, 117–131ADSCrossRefGoogle Scholar
  26. Yavorskaya, I.M., Belyaev, Yu.N. and Monakhov, A.A. (1975): Experimental study of a spherical Couette flow. Sov. Phys. Dokl., vol. 20, 4, 256–258ADSGoogle Scholar
  27. Yavorskaya, I.M., Belyaev, Yu.N., Monakhov, A.A., Astafeva, N.M, Scherbakov, S.A. and Vvedenskaya, N.D. (1980): Stability, non-uniqueness and transition to turbulence in the flow between two rotating spheres. IUTAM-Symposium, TorontoGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • P. Wulf
    • 1
  • C. Fechtmann
    • 1
  • C. Egbers
    • 1
  • H. J. Rath
    • 1
  1. 1.Center of Applied Space Technology and Microgravity (ZARM)University of BremenBremenGermany

Personalised recommendations