Brain Damage Secondary to Hemorrhagic Traumatic Shock in Baboons

  • G. Schlag
  • K. Zarkovic
  • H. Redl
  • N. Zarkovic
  • G. Waeg
Conference paper


Trauma and hemorrhage in experimental models should closely mimic human polytrauma to create a valid basis for drawing definitive conclusions about the pathomechanisms and pathophysiology of polytrauma


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baethmann A, Kempski O (1991) The brain in shock. Secondary disturbances of cerebral function. Chest 100:205S–208SPubMedGoogle Scholar
  2. 2.
    Bahrami S, Schlag G, Yao YM, Redl H (1994) Involvement of endotoxin, tumor necrosis factor, and nitric oxide in hemorrhagic shock-related alterations. In: Schlag G, Redl H, Traber DL (eds) Shock, sepsis and organ failure-nitric oxide, Fourth Wiggers Bernard Conference. Springer, Berlin Heidelberg New York, pp 59–76Google Scholar
  3. 3.
    Braughler JM, Hall ED (1989) Central nervous system trauma and stroke I. Biochemical considerations of oxygen radical formation and lipid peroxidation. Free Radic Biol Med 6:289–301PubMedCrossRefGoogle Scholar
  4. 4.
    Brierley JB, Brown AW, Excell BJ, Meldrum BS (1969) Brain damage in the rhesus monkey resulting from profound arterial hypotension. I. Its nature, distribution and general physiological correlates. Brain Res 13:68–100PubMedCrossRefGoogle Scholar
  5. 5.
    Brierley JB, Excell BJ (1966) The effects of profound systemic hypotension upon the brain of M. rhesus. Physiological and pathological observations. Brain 89:269–298PubMedCrossRefGoogle Scholar
  6. 6.
    Brierley JB, Prior PF, Calrerley J, Jackson SJ, Brown AW (1980) The pathogenesis of ischemic neuronal damage along the cerebral arterial boundary zones in Papio ursinus. Brain 103:929–965PubMedCrossRefGoogle Scholar
  7. 7.
    Chaudry IH, Ayala A, Meldrum A, Ertel W (1993) Hemorrhage-induced alterations in cell mediated immune function. In: Faist E, Meakins J, Schildberg FW (eds) Host defense dysfunction in trauma, shock and sepsis. Springer, Berlin Heidelberg New York, pp 149–160CrossRefGoogle Scholar
  8. 8.
    Cole G, Cowil VA (1987) Long term survival after cardiac arrest — case report and neuropathological findings. Clin Neuropathol 6:104–109Google Scholar
  9. 9.
    Esterbauer H (1993) Cytotoxicity and genotoxicity of lipid-peroxidation products. Am J Clin Nutr 57 [Suppl]:779S–786SPubMedGoogle Scholar
  10. 10.
    Esterbauer H, Weger W (1967) Über die Wirkungen von Aldehyden auf gesunde und maligne Zellen; Synthese von homologen 4-Hydroxy-2-alkenalen. Chemical Monthly 98:1884–1891CrossRefGoogle Scholar
  11. 11.
    Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128PubMedCrossRefGoogle Scholar
  12. 12.
    Freeman BA, Topolosky MK, Crapo JD (1982) Hyperoxia increases oxygen radical production in rat lung homogenates. Arch Biochem Biophys 216:477–484PubMedCrossRefGoogle Scholar
  13. 13.
    Graham DI, McGeorge A, Fitch W, Jones JV, Mac Kerzil ET (1984) Ischemic brain damage induced by rapid lowering of arterial pressure in hypotension. J Hypertens 2:297–304PubMedCrossRefGoogle Scholar
  14. 14.
    Graham DI, Menedelow AD, Tuor U, Fitch W (1990) Neuropathologic consequences of internal carotid artery occlusion and hemorrhagic hypotension in baboons. Stroke 21:428–434PubMedCrossRefGoogle Scholar
  15. 15.
    Grcevic N (1982) Topography and pathogenic mechanisms of lesions in “Inner cerebral trauma”. Rad J AZU 402:265–331Google Scholar
  16. 16.
    Haglund U (1993) Hypoxic damage. In: Schlag G, Redl H (eds) Pathophysiology of shock, sepsis, and organ failure. Springer, Berlin Heildelberg New York, pp 314–321CrossRefGoogle Scholar
  17. 17.
    Hall ED, Braughler JM (1989) Central nervous system trauma and stroke II. Physiological and pharmacological evidence for involvement of oxygen radicals and lipid peroxidation. Free Radic Biol Med 6:289–301PubMedCrossRefGoogle Scholar
  18. 18.
    Katusic ZS, Schugel J, Consentino F, Vanhoutte PM (1993) Endothelium-dependent contractions to oxygen-derived free radicals in the canine basilar artery. Am J Physiol 257:H859–H864Google Scholar
  19. 19.
    Levy DE, Brierley JB, Plum F (1975) Ischemic brain damage in the gerbil in the absence of no-reflow. J Neurol Neurosurg Psychiatry 38:1197–1205PubMedCrossRefGoogle Scholar
  20. 20.
    Little JR, Sundt TM, Kerr FWL (1974) Neuronal alteration in developing cortical infarction. An experimental study in monkeys. J Neurosurg 39:186–198CrossRefGoogle Scholar
  21. 21.
    Martinez MC, Bosch-Morell F, Raya A, Roma J, Aldasoro M, Vila J, Lluch S, Romero FJ (1994) 4-Hydroxynonenal, a lipid peroxidation product, induces relaxation of human cerebral arteries. J Cereb Blood Flow Metab 14:693–696PubMedCrossRefGoogle Scholar
  22. 22.
    Meldrum BS, Brierley JB (1969) Brain damage in the rhesus monkey resulting from profound arterial hypotension. II. Changes in the spontaneous and evoked electrical activity of the neocortex. Brain Res 13:101–118PubMedCrossRefGoogle Scholar
  23. 23.
    Murr R, Berger S, Schürer L, Kempski O, Staub F, Baethmann A (1993) Relationship of cerebral blood flow disturbances with brain oedema formation. Acta Neurochir Suppl (wien) 59:11–17PubMedGoogle Scholar
  24. 24.
    Redl H, Gasser H, Hallström S, Schlag G (1993) Radical related cell injury. In: Schlag G, Redl H (eds) Pathophysiology of shock, sepsis, and organ failure. Springer, Berlin Heidelberg New York, pp 92–110CrossRefGoogle Scholar
  25. 25.
    Siegel JH, Gens DR, Mamantov T, Geisler FH, Goodarzi S, Mackenzie EJ (1991) Effect of associated injuries and blood volume replacement on death, rehabilitation needs, and disability in blunt traumatic brain injury. Crit Care Med 19:1252–1265PubMedCrossRefGoogle Scholar
  26. 26.
    Stratakis CA, Chrousos GP (1995) Neuroendocrinology and pathophysiology of the stress system. Ann NY Acad Sci 771:1–18PubMedCrossRefGoogle Scholar
  27. 27.
    Strieter RM, Colletti LM, Metinko AP, Rolfe MW, DeMeester SR, Standiford TJ, Kunkel SL (1993) The role of cytokine networks mediating inflammation and ischemia-reperfusion injury. In: Schlag G, Redl H, Traber DL (eds) Shock, sepsis and organ failure, Third Wiggers Bernard Conference, Springer, Berlin Heidelberg New York, pp 205–227CrossRefGoogle Scholar
  28. 28.
    Waeg G, Dimsity G, Esterbauer H (1996) Monoclonal antibodies for detection of 4-hydroxynonenal modified proteins. Free Radic Biol Med 25:149–159Google Scholar
  29. 29.
    Waterfall AH, Singh G, Fry JR, Marsden CA (1995) Detection of the lipid peroxidation product malondialdehyde in the rat brain in vivo. Neurosci Lett 200:69–72PubMedCrossRefGoogle Scholar
  30. 30.
    Zarkovic N, Ilic Z, Jurin M, Schaur RJ, Puhl H, Esterbauer H (1993) Stimulation of HeLa cell growth by physiological concentrations of 4-hydroxynonenal. Cell Biochem Funct 11:279–286PubMedCrossRefGoogle Scholar
  31. 31.
    Zarkovic N, Schaur RJ, Puhl H, Jurin M, Esterbauer H (1994) Mutual dependence of growth modifying effects of 4-hydroxynonenal and fetal calf serum in vitro. Free Radic Biol Med 16:877–884PubMedCrossRefGoogle Scholar
  32. 32.
    Zollner H, Schaur RJ, Esterbauer H (1991) Biological activities of 4-hydroxyalkenals. In: Sies H (ed) Oxidative Stress. Academic, London, pp 337–369Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • G. Schlag
  • K. Zarkovic
  • H. Redl
  • N. Zarkovic
  • G. Waeg

There are no affiliations available

Personalised recommendations