Skip to main content

Aspects of Cortical Destruction in Alzheimer’s Disease

  • Conference paper
Connections, Cognition and Alzheimer’s Disease

Part of the book series: Research and Perspectives in Alzheimer’s Disease ((ALZHEIMER))

Summary

Alzheimer’s disease is an immutably progressing dementing disorder. Its major pathologic hallmark is the development of cytoskeletal changes in a few susceptible neuronal types. These changes do not occur inevitably with advancing age, but once the disease has begun, spontaneous recovery or remissions are not observed.

The initial cortical changes develop in the poorly myelinated transentorhinal region of the medial temporal lobe. The destructive process then follows a predictable pattern as it extends into other cortical areas. Location of the tanglebearing neurons and the severity of changes allow the distinction of six stages in disease propagation (transentorhinal stages I–II: clinically silent cases; limbic stages III-IV: incipient Alzheimer’s disease; neocortical stages V-VI: fully developed Alzheimer’s disease). A small number of cases display particularly early changes, indicating that advanced age is not a prerequisite for the evolution of the lesions. Alzheimer’s disease is thus an age-related, but not an agedependent, disease. The degree of brain destruction at stages III–IV often leads to the appearance of initial clinical symptoms, while stages V–VI represent fully developed Alzheimer’s disease. Assessment of stage V–VI cases allows estimation of the rate of prevalence of the disease.

The pattern of appearance of the neurofibrillary changes bears a striking resemblance to the inverse sequence of cortical myelination. Factors released by oligodendrocytes exert important influence upon nerve cells and suppress disordered neuritic outgrowth. The lack of such factors due to premature dysfunction of oligodendrocytes could contribute to imbalances in the neuronal cytoskeleton and eventually initiate the development of neurofibrillary changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander GE, Crutcher MD, De Long MR (1990) Basal ganglia-thalamocortical circuits: parallel sub-strates for motor, oculomotor, “prefrontal” and “limbic” functions. Progr Brain Res 85: 119 – 146

    Article  CAS  Google Scholar 

  • Alzheimer A (1990) Über eine eigenartige Erkrankung der Hirnrinde. Centralbl Nervenheilk Psychiatr (Leipzig) 30: 177 – 179

    Google Scholar 

  • Amaral DG (1987) Memory: anatomical organization of candidate brain regions. In: Brookhart JM, Mountcastle VB (eds) Handbook of physiology: The nervous system, V: Higher functions of the nervous system. 5th ed. Amer Physiol Soc, Bethesda, pp 211 – 294

    Google Scholar 

  • Amaral DG, Insausti R (1990) Hippocampal formation. In: Paxinos E (ed) The human nervous system. Academic Press, New York, pp 711 – 756

    Google Scholar 

  • Amaral DG, Price JL, Pitkänen A, Carmichael ST (1992) Anatomical organization of the primate amygdaloid complex. In: Aggleton JP (ed) The amygdala: Neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, New York, pp 1 – 66

    Google Scholar 

  • Arnold SE, Hyman BT, Flory J, Damasio AR, van Hoesen GW (1991) The topographical and neuroana-tomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cerebral Cortex 1: 103 – 116

    Article  PubMed  CAS  Google Scholar 

  • Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992 a) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42: 631–639

    Google Scholar 

  • Arriagada PV, Marzloff L, Hyman BT (1992b) Distribution of Alzheimer-type pathologic changes in non-demented elderly individuals matches the pattern in Alzheimer’s disease. Neurology 42: 1681 – 1688

    PubMed  CAS  Google Scholar 

  • Bachman DL, Wolf PA, Linn RT, Knoefel JE, Cobb JL, Belanger AJ, White LR, D’Agostino RB (1993) Incidence of dementia and probable Alzheimer’s disease in a general population: the Framingham study. Neurology 43: 515 – 519

    PubMed  CAS  Google Scholar 

  • Balazs L, Leon M (1994) Evidence of an oxidative challenge in the Alzheimer’s brain. Neurochem Res 19: 1131 – 1137

    Article  PubMed  CAS  Google Scholar 

  • Bancher C, Brunner C, Lassmann H, Budka H, Jellinger K, Wiche G, Seitelberger F, Grundke-Iqbal I, Wisniewski HM (1989) Accumulation of abnormally phosphorylated τ precedes the formation of neurofibrillary tangles in Alzheimer’s disease. Brain Res 477: 90 – 99

    Article  PubMed  CAS  Google Scholar 

  • Bancher C, Braak H, Fischer P, Jellinger KA (1993) Neuropathological staging of Alzheimer lesions and intellectual status in Alzheimer’s and Parkinson’s disease. Neurosci Lett 162: 179 – 182

    Article  PubMed  CAS  Google Scholar 

  • Benzi G, Moretti A (1995) Are reactive oxygen species involved in Alzheimer’s disease? Neurobiol Aging 16: 661 – 674

    Article  PubMed  CAS  Google Scholar 

  • Berg L, Morris JC (1994) Diagnosis. In: Terry RD, Katzman R, Bick KL (eds) Alzheimer Disease. Raven Press, New York, pp 9 – 25

    Google Scholar 

  • Braak E, Braak H, Mandelkow EM (1994) A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol 87: 554 – 567

    Article  PubMed  CAS  Google Scholar 

  • Braak H (1980) Architectonics of the human telencephalic cortex. Springer, Berlin. Braak H,

    Google Scholar 

  • Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82: 239 – 259

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1994) Pathology of Alzheimer’s disease. In: Calne DB (ed) Neurodegenerative diseases. Saunders, Philadelphia, pp 585 – 613

    Google Scholar 

  • Braak H, Braak E (1996) Development of Alzheimer-related neurofibrillary changes in the neocortex inversely recapitulates cortical myelogenesis. Acta Neuropathol. 92: 197 – 201

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Duyckaerts C, Braak E, Piette F (1993) Neuropathological staging of Alzheimer-related changes correlates with psychometrically assessed intellectual status. In: Corian B, Iqbal K, Nicolini M, Winblad B, Wisniewski H, Zatta P (eds) Alzheimer’s disease: Advances in Clinical and Basic Research. Third International Conference on Alzheimer’s Disease and Related Disorders. Wiley, Chichester, pp 131 – 137

    Google Scholar 

  • Braak H, Braak E, Yilmazer D, de Vos RAI, Jansen ENH, Bohl J (1996) Pattern of brain destruction in Parkinson’s and Alzheimer’s diseases. J Neural Transm 103: 455 – 490

    Article  PubMed  CAS  Google Scholar 

  • Brodmann K (1910) Feinere Anatomie des Großhirns. In: Lewandowsky M (ed) Handbuch der Neurologie, Vol. 1, Springer, Berlin, pp 206 – 307

    Google Scholar 

  • Cadelli DS, Bandtlow CE, Schwab ME (1992) Oligodendrocyte- and myelin-associated inhibitors of neurite outgrowth: their involvement in the lack of CNS regeneration. Exp Neurol 115: 189 – 192

    Article  PubMed  CAS  Google Scholar 

  • Choi BH (1995) Oxidative stress and Alzheimer’s disease. Neurobiol Aging 16: 675 – 678

    Article  PubMed  CAS  Google Scholar 

  • Corey-Bloom J, Galasko D, Thal LJ (1994) Clinical features and natural history of Alzheimer’s disease. In: Calne DP (ed) Neurodegenerative diseases. Saunders, Philadelphia, pp 631 – 645

    Google Scholar 

  • Corrada M, Brookmeyer R, Kawas C (1995) Sources of variability in prevalence rates of Alzheimer’s disease. Int J Epidemiol 24: 1000 – 1005

    Article  PubMed  CAS  Google Scholar 

  • Damasio AR, Damasio H (1991) Disorders of higher brain function. In: Rosenberg RN (ed) Comprehensive neurology. Raven Press, New York, pp 639 – 657

    Google Scholar 

  • Dickson DW, Crystal HA, Mattiace LA, Masur DM, Blau AD, Davies P, Yen SH, Aronson MK (1991) Identification of normal and pathological aging in prospectively studied nondemented elderly humans. Neurobiol Aging 13: 179 – 189

    Article  Google Scholar 

  • Dickson DW, Ksiezak-Reding H, Liu WK, Davies P, Crowe A, Yen S HC (1992) Immunocytochemistry of neurofibrillary tangles with antibodies to subregions of tau protein: identification of hidden and cleaved tau epitopes and a new phosphorylation site. Acta Neuropathol 84: 596 – 605

    Article  PubMed  CAS  Google Scholar 

  • Duyckaerts C, He Y, Seilhean D, Delaère P, Piette F, Braak H, Hauw JJ (1994) Diagnosis and staging of Alzheimer’s disease in a prospective study involving aged individuals. Neurobiol Aging 15 (Suppl 1): 140 – 141

    Google Scholar 

  • Duyckaerts C, Delaère P, He Y, Camilleri S, Braak H, Piette F, Hauw JJ (1995) The relative merits of tau-and amyloid markers in the neuropathology of Alzheimer’s disease. In: Bergener M, Finkel SI (eds) Treating Alzheimer’s and other dementias. Springer, New York, pp 81 – 89

    Google Scholar 

  • Ebly EM, Parhad IM, Hogan DB, Fung TS (1994) Prevalence and types of dementia in the very old: results from the Canadian study of health and aging. Neurology 44; 1593 – 1600

    PubMed  CAS  Google Scholar 

  • Felleman DJ, van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1: 1 – 47

    Article  PubMed  CAS  Google Scholar 

  • Flechsig P (1920) Anatomie des menschlichen Gehirns und Rückenmarks auf myelogenetischer Grundlage. Thieme, Leipzig

    Google Scholar 

  • Gearing M, Mirra SS, Hedreen JC, Sumi SM, Hansen LA, Heyman A (1995) The consortium to establish a registry for Alzheimer’s disease (CERAD). Part X. Neuropathology confirmation of the clinical diagnosis of Alzheimer’s disease. Neurology 45: 461 – 466

    PubMed  CAS  Google Scholar 

  • Goedert M (1993) Tau protein and the neurofibrillary pathology of Alzheimer’s disease. Trends Neurosci 16: 460 – 465

    Article  PubMed  CAS  Google Scholar 

  • Goedert M, Spillantini MG, Crowther RA (1991) Tau proteins and neurofibrillary degeneration. Brain Pathol 1: 279 – 286

    Article  PubMed  CAS  Google Scholar 

  • Hardy R, Reynolds R (1993) Neuron-oligodendroglial interactions during central nervous system development. J Neurosci Res 36: 121 – 126

    Article  PubMed  CAS  Google Scholar 

  • Harrell LE, Callaway R, Powers R (1993) Autopsy in dementing illness: who participates? Alzheimer Dis Assoc Disord 7: 80 – 87

    Article  PubMed  CAS  Google Scholar 

  • Heimer L, de Olmos J, Alheid GF, Zaborszky L (1991) “Perestroika” in the basal forebrain: opening the border between neurology and psychiatry. Progr Brain Res 87: 109–165

    Article  CAS  Google Scholar 

  • Hofman A, Rocca W, Brayne C (1991) The prevalence of dementia in Europe: a collaborative study of the 1980–1990 findings. Int J Epidemiol 20: 736 – 748

    Article  PubMed  CAS  Google Scholar 

  • Hyman BT, van Hoesen GW, Damasio AR, Barnes CL (1984) Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 225: 1168 – 1170

    Article  PubMed  CAS  Google Scholar 

  • Hyman BT, van Hoesen GW, Damasio AR (1990) Memory-related neural systems in Alzheimer’s disease: an anatomic study. Neurology 40: 1721 – 1730

    PubMed  CAS  Google Scholar 

  • Hyman BT, Gomez-Isla T (1994) Alzheimer’s disease is a laminar, regional, and neural system specific disease, not a global brain disease. Neurobiol Aging 15: 353 – 354

    Article  PubMed  CAS  Google Scholar 

  • Iqbal K, Alonso AC, Gong CX, Khatoon S, Singh TJ, Grundke-Iqbal I (1994) Mechanism of neurofibrillary degeneration in Alzheimer’s disease. Molecular Neurobiol 9: 119 – 123

    Article  CAS  Google Scholar 

  • Jellinger K, Braak H, Braak E, Fischer P (1991) Alzheimer lesions in the entorhinal region and isocortex in Parkinson’s and Alzheimer’s diseases. Ann New York Acad Sci 640: 203 – 209

    CAS  Google Scholar 

  • Kapfhammer JP, Schwab ME (1994) Inverse patterns of myelination and GAP-43 expression in the adult CNS: Neurite growth inhibitors as regulators of neuronal plasticity. J Comp Neurol 340: 194 – 206

    Article  PubMed  CAS  Google Scholar 

  • Katzman R, Kawas C (1994) The epidemiology of dementia and Alzheimer’s disease. In: Terry RD, Katzman R, Bick KL (eds) Alzheimer’s disease. Raven Press, New York, pp 105 - 122

    Google Scholar 

  • Kemper TL (1978) Senile dementia: a focal disease in the temporal lobe. In: Nandy E (ed) Senile dementia: a biomedical approach. Elsevier, Amsterdam, pp 105 – 113

    Google Scholar 

  • Khachaturian ZS (1985) Diagnosis of Alzheimer’s disease. Arch Neurol 42: 1097 – 1105

    PubMed  CAS  Google Scholar 

  • Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G, Berg L (1991) The consortium to establish a registry for Alzheimer’s disease (CERAD). II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41: 479 – 486

    PubMed  CAS  Google Scholar 

  • Moossy J, Zubenko GS, Martinez AJ, Rao GR (1988) Bilateral symmetry of morphological lesions in Alzheimer’s disease. Arch Neurol 45: 251 – 254

    PubMed  CAS  Google Scholar 

  • Mortimer J (1988) Epidemiology of dementia: international comparisons. In: Brody JA, Maddox GL (eds) Epidemiology and aging: an international perspective. Springer, New York, pp 150 – 164

    Google Scholar 

  • Ohm TG, Müller H, Braak H, Bohl J (1995) Close-meshed prevalence rates of different stages as a tool to uncover the rate of Alzheimer’s disease-related neurofibrillary changes. Neuroscience 64: 209 – 217

    Article  PubMed  CAS  Google Scholar 

  • Pandya DN, Yeterian EH (1990) Prefrontal cortex in relation to other cortical areas in rhesus monkey: architecture and connections. Progr Brain Res 85: 63 – 94

    Article  CAS  Google Scholar 

  • Pappolla MA, Omar RA, Kim KS, Robakis NK (1992) Immunohistochemical evidence of antioxidant stress in Alzheimer’s disease. Am J Pathol 140: 621 – 628

    PubMed  CAS  Google Scholar 

  • Price DL, Sisodia SS (1994) Cellular and molecular biology of Alzheimer’s disease and animal models. Ann Rev Med 45: 435 – 446

    Article  PubMed  CAS  Google Scholar 

  • Price JL, Davis PB, Morris JC, White DL (1991) The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease. Neurobiol Aging 12: 295 – 312

    Article  PubMed  CAS  Google Scholar 

  • Probst A, Langui D, Ulrich J (1991) Alzheimer’s disease: a description of the structural lesions. Brain Pathol 1: 229 – 239

    Article  PubMed  CAS  Google Scholar 

  • Reisberg B, Ferris SH, Kluger A, Franssen E, DeLeon MJ, Mittelman M, Borenstein J, Rameshwar K, Alba R (1989) Symptomatic changes in CNS aging and dementia of the Alzheimer type: Cross-sectional, temporal, and remediable concomitants. In: Bergener M, Reisberg B (eds) Diagnosis and treatment of senile dementia. Springer, Berlin, pp 193 – 223

    Google Scholar 

  • Reisberg B, Pattschull–Furlan A, Franssen E, Sclan SG, Kluger A, Dingcong L, Ferris SH (1992) Dementia of the Alzheimer type recapitulates ontogeny inversely on specific ordinal and temporal parameters. In: Kostovic I, Knezevic S, Wisniewski HM, Spillich GJ (eds) Neurodevelopment, aging and cognition. Birkhäuser, Boston, pp 345 – 369

    Google Scholar 

  • Schwab ME (1990) Myelin-associated inhibitors of neurite growth and regeneration in the CNS. Trends Neurosci 13: 452 – 456

    Article  PubMed  CAS  Google Scholar 

  • Squire LR, Zola-Morgan S (1988) Memory: brain systems and behavior. Trends Neurosci 11: 170–175

    Article  PubMed  CAS  Google Scholar 

  • Squire LR, Zola-Morgan S (1991) The medial temporal lobe memory system. Science 253: 1380–1386

    Article  PubMed  CAS  Google Scholar 

  • Tierney MC, Fisher RH, Lewis AJ, Zorzitto ML, Snow WG, Reid DW, Nieuwstraten P (1988) The NINCDS-ADRDA work group criteria for the clinical diagnosis of probable Alzheimer’s disease: a clinicopathologic study of 57 cases. Neurology 38: 359–364

    Google Scholar 

  • Trojanowski JQ, Shin RW, Schmidt ML, Lee VMY (1995) Relationship between plaques, tangles, and dystrophic processes in Alzheimer’s disease. Neurobiol Aging 16: 335 – 340

    Article  PubMed  CAS  Google Scholar 

  • van Hoesen GW, Hyman BT (1990) Hippocampal formation: anatomy and the patterns of pathology in Alzheimer’s disease. Progr Brain Res 83: 445 – 457

    Article  Google Scholar 

  • van Hoesen GW, Solodkin A (1993) Some modular features of temporal cortex in humans as revealed by pathological changes in Alzheimer’s disease. Cerebral Cortex 3: 465 – 475

    Article  PubMed  Google Scholar 

  • van Hoesen GW, Hyman BT, Damasio AR (1991) Entorhinal cortex pathology in Alzheimer’s disease. Hippocampus 1: 1 – 8

    Article  PubMed  Google Scholar 

  • Vaughan DW (1984) The structure of neuroglial cells. In: Jones EG, Peters A (eds) Cerebral cortex, vol. 2: Functional properties of cortical cells. Plenum Press, New York, pp 285 – 329

    Google Scholar 

  • Vitek MP, Bhattacharya K, Glendening JM, Stopa E, Vlassara H, Bucala R, Monogue K, Cerami A (1994) Advanced glycation end products contribute to amyloidosis in Alzheimer’s disease. Proc Natl Acad Sci USA 91: 4766 – 4770

    Article  PubMed  CAS  Google Scholar 

  • Volicer L, Crino PB (1990) Involvement of free radicals in dementia of the Alzheimer’s type: a hypothesis. Neurobiol Aging 11: 567 – 571

    Article  PubMed  CAS  Google Scholar 

  • Vogt C, Vogt O (1919) Allgemeinere Ergebnisse unserer Hirnforschung. J Psychol Neurol 25: 279 – 461

    Google Scholar 

  • Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Blackwell, Oxford, pp 3 – 70

    Google Scholar 

  • Zilles K (1990) Cortex: In: Paxinos G (ed) The human nervous system. Academic Press, New York, pp 757 – 802

    Google Scholar 

  • Zola-Morgan S, Squire LR (1993) Neuroanatomy of memory. Ann Rev Neurosci 16: 547 – 563

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Braak, H., Braak, E. (1997). Aspects of Cortical Destruction in Alzheimer’s Disease. In: Hayman, B.T., Duyckaerts, C., Christen, Y. (eds) Connections, Cognition and Alzheimer’s Disease. Research and Perspectives in Alzheimer’s Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60680-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60680-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64504-4

  • Online ISBN: 978-3-642-60680-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics