Domain Decomposition Methods for Parallel Laser-Tissue Models with Monte Carlo Transport

  • Henry J. Alme
  • Garry Rodrigue
  • George Zimmerman
Conference paper


Achieving parallelism in simulations that use Monte Carlo transport methods presents interesting challenges. For problems that require domain decomposition, load balance can be harder to achieve. The Monte Carlo transport package may have to operate with other packages that have different optimal domain decompositions for a given problem. To examine some of these issues, we have developed a code that simulates the interaction of a laser with biological tissue; it uses a Monte Carlo method to simulate the laser and a finite element model to simulate the conduction of the temperature field in the tissue. We will present speedup and load balance results obtained for a suite of problems decomposed using a few domain decomposition algorithms we have developed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bruce Hendrickson, Robert Leland, An Improved Spectral Graph Partitioning Algorithm for Mapping Parallel Computations, Technical Report SAND92–1460, Sandia National Laboratories, 1992.Google Scholar
  2. 2.
    Richard A. London, Michael E. Glinsky, George B. Zimmerman, David S. Bailey, Steven L. Jacques, Laser-tissue interaction modeling with LATIS, Applied Optics, v. 36 (1 Dec. 1994 ), pp. 9068–74Google Scholar
  3. 3.
    Richard A. London, Michael E. Glinsky, George B. Zimmerman, David C. Eder, Steven L. Jacques, Coupled Light Transport-Heat Diffusion model for Laser Dosimetry with Dynamic Optical Properties, SPIE Proceedings, Laser-Tissue Inter- action VI, San Jose, CA, Feb 1995, v. 2391, p435Google Scholar
  4. 4.
    S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch, A Monte Carlo Method of Light Propagation in Tissue, SPIE Institute Seriesv. IS 5 (1989)Google Scholar
  5. 5.
    Chang-Ming Ma, Implementation of a Monte Carlo Code on a Parallel Computer System, Parallel Computing, v. 20 (1994), pp. 991–1005CrossRefzbMATHGoogle Scholar
  6. 6.
    F. Schmidt, W. Dax, M. Luger, Experiences with the Parallelization of Monte Carlo Problems, Progress in Nuclear Energy, v. 24 (1990), pp. 141–51CrossRefGoogle Scholar
  7. 7.
    J. Wood, H. Al-Bahadili, S. A. Khaddaj, Monte Carlo Photon Transport in Parallel Computers, Progress in Nuclear Energy, v. 24 (1990), pp. 153–64CrossRefGoogle Scholar
  8. 8.
    J. Wood, H. Al-Bahadili, S. A. Khaddaj, A Comparison of Monte Carlo Photon Transport on Two Types of Parallel Computer, Annals of Nuclear Energy, v. 18 (1991), n. 3, pp. 155–66CrossRefGoogle Scholar
  9. 9.
    C. Zhao, J. Wood, The Monte Carlo Method on a Parallel Computer, Annals of Nuclear Energy, v. 16 (1989), n. 12, pp. 649–57CrossRefGoogle Scholar
  10. 10.
    Ora E. Percus and Malvin L. Kalos, Random Number Generators for MIMD Parallel Processors, Journal of Parallel and Distributed Computing v. 6 (1989), pp.477–97CrossRefGoogle Scholar
  11. 11.
    A. De Matteis, S. Pagnutti, Controlling correlations in parallel Monte Carlo, Parallel Computing, v. 21 (1995), pp. 73–84CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Michael E. Glinsky, Richard A. London, George B. Zimmerman, Steven L. Jacques, Joseph D. Ols, Modeling of endovascular patch welding using temperature feed-back, Proceedings of Medical Applications of Lasers III, Barcelona, Spain, September 1995Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Henry J. Alme
    • 1
  • Garry Rodrigue
    • 1
  • George Zimmerman
    • 2
  1. 1.Department of Applied ScienceUniversity of California at DavisLivermoreUSA
  2. 2.X-DivisionLawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations