Advertisement

Constructions of (t, m, s)-Nets

  • Harald Niederreiter
Conference paper

Abstract

The most powerful current methods of constructing low-discrepancy point sets for quasi-Monte Carlo applications employ the theory of (t, m, s)-nets. This paper gives a survey of this theory and of the construction methods that are based on it. Some new results are also included.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Adams, M.J., Shader, B.L.: A construction for (t,m,s)-nets in base q. SIAM J. Discrete Math. 10 (1997) 460 – 468CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    Auer, R.: Ray class fields of global function fields with many rational places. Preprint, 1998Google Scholar
  3. [3]
    Clayman, A.T., Lawrence, K.M., Mullen, G.L., Niederreiter, H., Sloane, N.J.A.: Updated tables of parameters of (t,m,s)-nets. J. Combinatorial Designs, to appearGoogle Scholar
  4. [4]
    Clayman, A.T., Mullen, G.L.: Improved (t,m,s)-net parameters from the Gilbert-Varshamov bound. Applicable Algebra Engrg. Comm. Comp. 8(1997) 491–496CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    Edel, Y., Bierbrauer, J.: Construction of digital nets from BCH-codes. Monte Carlo and Quasi-Monte Carlo Methods 1996 (H. Niederreiter et al., eds.), Lecture Notes in Statistics, Vol. 127, pp. 221–231, Springer, New York, 1998Google Scholar
  6. [6]
    Faure, H.: Discrepance de suites associées à un système de numération (en dimension s). Acta Arith. 41 (1982) 337 - 351zbMATHMathSciNetGoogle Scholar
  7. [7]
    Hansen, T., Mullen, G.L., Niederreiter, H.: Good parameters for a class of node sets in quasi-Monte Carlo integration. Math. Comp. 61(1993) 225–234CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    Larcher, G., Lauß, A., Niederreiter, H., Schmid, W.Ch.: Optimal polyno-mials for (t,m,s)-nets and numerical integration of multivariate Walsh series. SIAM J. Numer. Analysis 33(1996) 2239–2253CrossRefzbMATHGoogle Scholar
  9. [9]
    Larcher, G., Niederreiter, H., Schmid, W.Ch.: Digital nets and sequences constructed over finite rings and their application to quasi-Monte Carlo integration. Monatsh. Math. 121(1996) 231–253CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    Lawrence, K.M.: A combinatorial characterization of (t,m,s)-nets in base b. J. Combinatorial Designs 4(1996) 275–293CrossRefzbMATHMathSciNetGoogle Scholar
  11. [11]
    Lawrence, K.M.: Construction of (t,m,s)-nets and orthogonal arrays from binary codes. Finite Fields Appl., to appearGoogle Scholar
  12. [12]
    Lawrence, K.M., Mahalanabis, A., Mullen, G.L., Schmid, W.Ch.: Construction of digital (t,m,s)-nets from linear codes. Finite Fields and Applications (S. Cohen and H. Niederreiter, eds.), London Math. Soc. Lecture Note Series, Vol. 233, pp. 189–208, Cambridge Univ. Press, Cambridge, 1996Google Scholar
  13. [13]
    Laywine, C.F., Mullen, G.L.: Discrete Mathematics Using Latin Squares. Wiley, New York, 1998zbMATHGoogle Scholar
  14. [14]
    Laywine, C.F., Mullen, G.L., Whittle, G.: D-dimensional hypercubes and the Euler and MacNeish conjectures. Monatsh. Math. 119(1995) 223–238CrossRefzbMATHMathSciNetGoogle Scholar
  15. [15]
    Mullen, G.L., Mahalanabis, A., Niederreiter, H.: Tables of (t,m,s)-net and (t,s)-sequence parameters. Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (H. Niederreiter and P.J.-S. Shiue, eds.), Lecture Notes in Statistics, Vol. 106, pp. 58–86, Springer, New York, 1995Google Scholar
  16. Mullen, G.L., Schmid, W.Ch.: An equivalence between (t,m,s)-nets and strongly orthogonal hypercubes. J. Combinatorial Theory Ser. A 76(1996) 164–174Google Scholar
  17. [17]
    Mullen, G.L., Whittle, G.: Point sets with uniformity properties and orthogonal hypercubes. Monatsh. Math. 113(1992) 265–273CrossRefzbMATHMathSciNetGoogle Scholar
  18. [18]
    Niederreiter, H.: Point sets and sequences with small discrepancy. Monatsh. Math. 104(1987) 273–337CrossRefzbMATHMathSciNetGoogle Scholar
  19. [19]
    Niederreiter, H.: Low-discrepancy and low-dispersion sequences. J. Number Theory 30(1988) 51–70CrossRefzbMATHMathSciNetGoogle Scholar
  20. [20]
    Niederreiter, H.: Low-discrepancy point sets obtained by digital constructions over finite fields. Czechoslovak Math. J. 42(1992) 143–166zbMATHMathSciNetGoogle Scholar
  21. [21]
    Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia, 1992Google Scholar
  22. Niederreiter, H.: Orthogonal arrays and other combinatorial aspects in the theory of uniform point distributions in unit cubes. Discrete Math. 106/107(1992) 361–367Google Scholar
  23. Niederreiter, H.: Nets, (t,s)-sequences, and algebraic curves over finite fields with many rational points. Proc. International Congress of Mathematicians (Berlin, 1998), Documenta Math. Extra Volume ICM III (1998) 377–386Google Scholar
  24. [24]
    Niederreiter, H., Xing, C.P.: Low-discrepancy sequences obtained from algebraic function fields over finite fields. Acta Arith. 72(1995) 281–298zbMATHMathSciNetGoogle Scholar
  25. [25]
    Niederreiter, H., Xing, C.P.: Low-discrepancy sequences and global function fields with many rational places. Finite Fields Appl. 2(1996) 241–273CrossRefzbMATHMathSciNetGoogle Scholar
  26. [26]
    Niederreiter, H., Xing, C.P.: Quasirandom points and global function fields. Finite Fields and Applications (S. Cohen and H. Niederreiter, eds.), London Math. Soc. Lecture Note Series, Vol. 233, pp. 269–296, Cambridge Univ. Press, Cambridge, 1996Google Scholar
  27. [27]
    Niederreiter, H., Xing, C.P.: The algebraic-geometry approach to low-discrepancy sequences. Monte Carlo and Quasi-Monte Carlo Methods 1996 (H. Niederreiter et al., eds.), Lecture Notes in Statistics, Vol. 127, pp. 139–160, Springer, New York, 1998Google Scholar
  28. [28]
    Niederreiter, H., Xing, C.P.: Nets, (t,s)-sequences, and algebraic geometry. Random and Quasi-Random Point Sets (P. Hellekalek and G. Larcher, eds.), Lecture Notes in Statistics, Vol. 138, pp. 267–302, Springer, New York, 1998Google Scholar
  29. [29]
    Schmid, W.Ch.: (t,m,s)-nets: digital construction and combinatorial aspects. Dissertation, University of Salzburg, 1995Google Scholar
  30. [30]
    Schmid, W.Ch.: Shift-nets: a new class of binary digital (t,m,s)-nets. Monte Carlo and Quasi-Monte Carlo Methods 1996 (H. Niederreiter et al., eds.), Lecture Notes in Statistics, Vol. 127, pp. 369–381, Springer, New York, 1998Google Scholar
  31. [31]
    Schmid, W.Ch.: Improvements and extensions of the “Salzburg Tables” by using irreducible polynomials. This volumeGoogle Scholar
  32. [32]
    Schmid, W.Ch., Wolf, R.: Bounds for digital nets and sequences. Acta Arith. 78(1997) 377–399zbMATHMathSciNetGoogle Scholar
  33. [33]
    Soboi’, I.M.: The distribution of points in a cube and the approximate evaluation of integrals (Russian). Zh. Vychisl. Mat. i Mat. Fiz. 7(1967) 784–802Google Scholar
  34. [34]
    Tezuka, S.: Polynomial arithmetic analogue of Halton sequences. ACM Trans. Modeling and Computer Simulation 3(1993) 99–107CrossRefzbMATHGoogle Scholar
  35. [35]
    Tezuka, S.: Uniform Random Numbers: Theory and Practice. Kluwer Academic Pubi., Boston, 1995CrossRefzbMATHGoogle Scholar
  36. [36]
    Tezuka, S., Tokuyama, T.: A note on polynomial arithmetic analogue of Halton sequences. ACM Trans. Modeling and Computer Simulation 4(1994) 279–284CrossRefzbMATHGoogle Scholar
  37. [37]
    Xing, C.P., Niederreiter, H.: A construction of low-discrepancy sequences using global function fields. Acta Arith. 73(1995) 87–102zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Harald Niederreiter
    • 1
  1. 1.Institute of Discrete MathematicsAustrian Academy of SciencesViennaAustria

Personalised recommendations