Advertisement

Improvements and Extensions of the “Salzburg Tables” by Using Irreducible Polynomials

  • Wolfgang Ch. Schmid
Conference paper

Abstract

The quality of quasi-Monte Carlo methods mainly depends on the distribution properties of the underlying (deterministic) point set. The theory of digital nets provides a method for the construction of extremely well distributed point sets in thes-dimensional unit cube.

This article is an extension of the work in [LLNS96] where a special class of these point sets was introduced. We present improved existence results for digital nets over finite fields \({\mathbb{F}_q}\)of arbitrary prime-power orderq, and show great improvements for concrete constructions in the binary case.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [CLM+99]
    A. T. Clayman, K. M. Lawrence, G. L. Mullen, H. Niederreiter, and N. J. A. Sloane. Updated tables of parameters of (£, ra, s)-nets. To appear in: J. Comb. Designs, 1999.Google Scholar
  2. [HMN93]
    T. Hansen, G. L. Mullen, and H. Niederreiter. Good parameters for a class of node sets in quasi-Monte Carlo integration.Math. Comp.,61: 225–234, 1993.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [LLNS96]
    G. Larcher, A. Lauß, H. Niederreiter, and W. Ch. Schmid. Optimal polynomials for (t, ra, s)-nets and numerical integration of multivariate Walsh series.SIAM J. Numer. Analysis,33: 2239–2253, 1996.CrossRefzbMATHGoogle Scholar
  4. [LNS96]
    G. Larcher, H. Niederreiter, and W. Ch. Schmid. Digital nets and sequences constructed over finite rings and their application to quasi- Monte Carlo integration.Monatsh. Math.,121: 231–253, 1996.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [LSW95]
    G. Larcher, W. Ch. Schmid, and R. Wolf. Digital (t, ra, s)-nets, digital (T, s)-sequences, and numerical integration of multivariate Walsh series. In P. Hellekalek, G. Larcher, and P. Zinterhof, editors,Proceedings of the 1st Salzburg Minisymposium on Pseudorandom Number Generation and Quasi-Monte Carlo Methods, Salzburg, Nov. 18, 1994, volume 95–4 of Technical Report Series, pages 75–107. ACPC-Austrian Center for Parallel Computation, 1995.Google Scholar
  6. [Nie87]
    H. Niederreiter. Point sets and sequences with small discrepancy.Monatsh. Math.,104: 273–337, 1987.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [Nie92a]
    H. Niederreiter. Low-discrepancy point sets obtained by digital constructions over finite fields.Czechoslovak Math. J.,42: 143–166, 1992.zbMATHMathSciNetGoogle Scholar
  8. [Nie92b]
    H. Niederreiter.Random Number Generation and Quasi-Monte Carlo Methods. Number63in CBMS-NSF Series in Applied Mathematics. SIAM, Philadelphia, 1992.CrossRefzbMATHGoogle Scholar
  9. [Sch97]
    W. Ch. Schmid. Shift-nets: a new class of binary digital (t, ra, s)-nets. In H. Niederreiter et al., editor,Monte Carlo and Quasi-Monte Carlo Methods 1996, volume 127 ofLecture Notes in Statistics, pages 369–381. Springer, New York, 1997.Google Scholar
  10. [Sch99]
    W. Ch. Schmid. The exact quality parameter of nets derived from Sobol’ and Niederreiter sequences. In O. Illiev et al., editor,Recent Advances in Numerical Methods and Applications, pages 287–295. World Scientific Pubi, 1999. To appear.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Wolfgang Ch. Schmid
    • 1
  1. 1.Department of MathematicsUniversity of SalzburgSalzburgAustria

Personalised recommendations