Dynamic Creation of Pseudorandom Number Generators

  • Makoto Matsumoto
  • Takuji Nishimura
Conference paper


We propose a new scheme Dynamic Creation (DC) of pseudorandom number generators (PRNG) for large scale Monte Carlo simulations in parallel or distributed systems. DC receives user’s specification such as word size, period, size of working area, together with a process ID (or a set of IDs). Then DC creates a PRNG (or a set of PRNGs, respectively) satisfying the specification, so that ID number is encoded in the characteristic polynomial of PRNG. Thus, different IDs assure highly independent PRNGs. Each PRNG is a small Mersenne Twister, which we proposed previously.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Couture, R., L’Ecuyer P., Tezuka, S.: On the distribution of k-dimensional vectors for simple and combined Tausworthe sequences, Math. Comput., 60(1993) 749 – 761zbMATHMathSciNetGoogle Scholar
  2. 2.
    Knuth, D.E.: Seminumerical Algorithms. 3rd ed., Vol 2, The Art of Computer Programming, Addison Wesley, Reading, MA., (1997)Google Scholar
  3. 3.
    Lenstra, A.K.: Factoring multivariate polynomials over finite fields, J. Com- put. Syst. Sci., 30(1985) 235 – 248CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Matsumoto, M., Kurita, Y.: Twisted GFSR generators II, ACM Trans. Model. Comput. Simul., 4(1994) 254 – 266zbMATHGoogle Scholar
  5. 5.
    Matsumoto, M., Nishimura, T.: Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random Number Generator, ACM Trans. Model. Comput. Simul., 8(1998) 3 – 30CrossRefzbMATHGoogle Scholar
  6. 6.
    Tezuka, S.: Lattice structure of pseudorandom sequence from shift register generators, Proceedings of the 1990 Winter Simulation Conference, IEEE (1990) 266 – 269Google Scholar
  7. 7.
    Tezuka, S.: The k-dimensional distribution of combined GFSR sequences, Math. Comput., 62(1994) 809 – 817zbMATHMathSciNetGoogle Scholar
  8. 8.
    Tezuka, S.: Uniform Random Numbers: Theory and Practice, Kluwer, (1995)CrossRefzbMATHGoogle Scholar
  9. 9.
    Tootill, J.P.R., Robinson, W.D., Adams, A.G.: The Runs Up-and-Down Performance of Tausworthe Pseudo-Random Number Generators, J. ACM, 18(1971), 381 – 399CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Makoto Matsumoto
    • 1
  • Takuji Nishimura
    • 1
  1. 1.Department of MathematicsKeio UniversityKohoku-ku, YokohamaJapan

Personalised recommendations