Advertisement

A Discrepancy-Based Analysis of Figures of Merit for Lattice Rules

  • T. N. Langtry
Conference paper

Abstract

Classical figures of merit for choosing quasi-Monte Carlo methods for integration over thes-dimensional unit cube are the L p star discrepancy of the corresponding set of quadrature points and, when considering periodic integrands, Pα— usually withα an even positive integer. Hickernell (1998) introduced a generalised notion of discrepancy of which both these figures of merit are special cases. In this paper Hickernell’s decomposition of generalised discrepancy into lower-dimensional components is used to characterise differences between reported results achieved by rules selected according to these figures of merit. A further extension with application to rank-1 lattice rules and their k s copies is also described.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Adams.Sobolev Spaces. Academic Press, New York, San Francisco, London, 1975.zbMATHGoogle Scholar
  2. 2.
    M. Aronszajn. Theory of reproducing kernels.Trans. Amer. Math. Soc., 68: 337–404, 1950.CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    R. Cools and I. H. Sloan. Minimal cubature formula of trigonometric degree.Math. Comp., 65: 1583–1600, 1996.CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    S. A. R. Disney and I. H. Sloan. Lattice integration rules of maximal rank formed by copying rank 1 rules.SIAM J. Numer. Anal., 29: 566–577, 1992.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    K. Frank and S. Heinrich. Computing discrepancies of Smolyak quadrature rules.J. Complexity, 12: 287–314, 1996.CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    K. Frank and S. Heinrich. Computing discrepancies related to spaces of smooth periodic functions. InProceedings of the Second International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, volume 127 ofLecture Notes in Statistics, pages 238–250. Springer-Verlag, 1998.Google Scholar
  7. 7.
    A. Genz. Testing multidimensional integration routines. InTools, Methods and Languages for Scientific and Engineering Computation, pages 81–94, Amsterdam, 1984. North-Holland.Google Scholar
  8. 8.
    A. Genz. A package for testing multiple integration subroutines. InNumerical Integration: Recent Developments, Software and Applications, pages 337–340, Dordrecht, 1987. D. Reidel Publishing.CrossRefGoogle Scholar
  9. 9.
    F. J. Hickernell. A generalised discrepancy and quadrature error bound.Math. Comp., 67: 299–322, 1998.CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    F. J. Hickernell.Lattice rules: how well do they measure up? Technical report Math-175. Hong Kong Baptist University, 1998.Google Scholar
  11. 11.
    S. Joe and I. H. Sloan. Implementation of a lattice method for numerical multiple integration.ACM Trans. Math. Software, 19: 523–545, 1993.CrossRefzbMATHGoogle Scholar
  12. 12.
    T. N. Langtry. Geometric aspects of discrepancy. Technical report, December 1997.Google Scholar
  13. 13.
    H. Niederreiter.Random Number Generation and Quasi-Monte Carlo Methods. SIAM (Society for Industrial and Applied Mathematics), Philadelphia, Pennsylvania, 1992.CrossRefGoogle Scholar
  14. 14.
    H. Niederreiter and I. H. Sloan. Quasi-Monte Carlo methods with modified vertex weights. In H. Braß and G. Hämmerlin, editors,Numerical Integration IV, volume 112 ofInternat. Series of Numer. Math., pages 253–265, Basel, 1993. Birkhäuser.CrossRefGoogle Scholar
  15. 15.
    E. Novak, I. H. Sloan, and H. Woźniakowski. Tractability of tensor product linear operators.Journal of Complexity, 13: 387–418, 1997.CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    S. Saitoh.Integral Transforms, Reproducing Kernels and their Applications. Addison Wesley Longman, Essex, England, 1997.zbMATHGoogle Scholar
  17. 17.
    I. H. Sloan and S. Joe.Lattice Methods for Multiple Integration. Oxford University Press, Oxford, 1994.zbMATHGoogle Scholar
  18. 18.
    I. H. Sloan and J. N. Lyness. The representation of lattice quadrature rules as multiple sums.Math. Comp., 52: 81–94, 1989.CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    I. H. Sloan and H. Woźniakowski. When are quasi-Monte Carlo algorithms efficient for high dimensional integrals?Journal of Complexity, 14: 1–33, 1998.CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    S. L. Sobolev.Some Applications of Functional Analysis in Mathematical Physics, volume 90 ofTranslations of Mathematical Monographs. American Mathematical Society, Providence, Rhode Island, third edition, 1991. Translated from the Russian by Harold H. McFaden.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • T. N. Langtry
    • 1
  1. 1.University of TechnologySydneyAustralia

Personalised recommendations