What Affects the Accuracy of Quasi-Monte Carlo Quadrature?

  • Fred J. Hickernell
Conference paper


Quasi-Monte Carlo quadrature methods have been used for several decades. Their accuracy ranges from excellent to poor, depending on the problem. This article discusses how quasi-Monte Carlo quadrature error can be assessed, and what are the factors that influence it.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Aro50]
    M. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68(1950), 337–404.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [AS64]
    M. Abramowitz and I. A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs and mathematical tables, U. S. Government Printing Office, Washington, DC, 1964.zbMATHGoogle Scholar
  3. [CM097]
    R. E. Caflisch, W. Morokoff, and A. Owen, Valuation of mortgage backed securities using Brownian bridges to reduce effective dimension, J. Comput. Finance 1 (1997), 27–46.Google Scholar
  4. [CP76]
    R. Cranley and T. N. L. Patterson, Randomization of number theoretic methods for multiple integration, SIAM J. Numer. Anal. 13(1976), 904–914.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [EHL99]
    K. Entacher, P. Hellekalek, and P. L’écuyer, Quasi-Monte Carlo node sets from linear congruential generators, In Niederreiter and Spanier [NS99].Google Scholar
  6. [FW94]
    K. T. Fang and Y. Wang, Number-theoretic methods in statistics, Chapman and Hall, New York, 1994.CrossRefzbMATHGoogle Scholar
  7. [Gen92]
    A. Genz, Numerical computation of multivariate normal probabilities, J. Comput. Graph. Statist. 1(1992), 141–150.Google Scholar
  8. [Gen93]
    A. Genz, Comparison of methods for the computation of multivariate normal probabilities, Computing Science and Statistics 25(1993), 400–405.Google Scholar
  9. [Hei96]
    S. Heinrich, Efficient algorithms for computing the L 2 -discrepancy, Math. Comp. 65 (1996), 1621–1633.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [HH97]
    F. J. Hickernell and H. S. Hong, Computing multivariate normal probabilities using rank-1 lattice sequences, Proceedings of the Workshop on Scientific Computing (Hong Kong) (G. H. Golub, S. H. Lui, F. T. Luk, and R. J. Plemmons, eds.), Springer-Verlag, Singapore, 1997, pp. 209–215.Google Scholar
  11. [HH99]
    F. J. Hickernell and H. S. Hong, The asymptotic efficiency of randomized nets for quadrature, Math. Comp. 68(1999), 767–791.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [Hic95]
    F. J. Hickernell, A comparison of random and quasirandom points for multidimensional quadrature, In Niederreiter and Shiue [NS95], pp. 213–227.Google Scholar
  13. [Hic96a]
    F. J. Hickernell, The mean square discrepancy of randomized nets, ACM Trans. Model. Comput. Simul. 6(1996), 274 - 296.CrossRefzbMATHMathSciNetGoogle Scholar
  14. [Hic96b]
    F. J. Hickernell, Quadrature error bounds with applications to lattice rules, SIAM J. Numer. Anal. 33(1996), 1995–2016, corrected printing of Sections 3–6 in ibid., 34(1997), 853–866.CrossRefMathSciNetGoogle Scholar
  15. [Hic98a]
    F. J. Hickernell, A generalized discrepancy and quadrature error bound, Math. Comp. 67(1998), 299–322.CrossRefzbMATHMathSciNetGoogle Scholar
  16. [Hic98b]
    F. J. Hickernell, Lattice rules: How well do they measure up?, Random and Quasi-Random Point Sets (P. Hellekalek and G. Larcher, eds.), Lecture Notes in Statistics, vol. 138, Springer-Verlag, New York, 1998, pp. 109–166.Google Scholar
  17. [Hic99]
    F. J. Hickernell, Goodness-of-fit statistics, discrepancies and robust designs, Statist. Probab. Lett. (1999), to appear.Google Scholar
  18. [Hla61]
    E. Hlawka, Funktionen von beschränkter Variation in der Theorie der Gleichverteilung, Ann. Mat. Pura Appl. 54 (1961), 325–333.CrossRefzbMATHMathSciNetGoogle Scholar
  19. [HW98]
    F. J. Hickernell and H. Woźniakowski, Integration and approximation in arbitrary dimensions, 1998, submitted for publication.Google Scholar
  20. [Kei96]
    B. D. Keister, Multidimensional quadrature algorithms, Computers in Physics 10(1996), 119–122.CrossRefGoogle Scholar
  21. [KW97]
    L. Kocis and W. J. Whiten, Computational investigations of low- discrepancy sequences, ACM Trans. Math. Software 23(1997), 266–294.CrossRefzbMATHGoogle Scholar
  22. [Lar99]
    G. Larcher, Point sets with minimal L 2 -discrepancy, 1999, preprint.Google Scholar
  23. [L’E99]
    P. L’Ecuyer, Tables of linear congruential generators of different sizes and good lattice structure, Math. Comp. 68 (1999), 249 - 260.CrossRefzbMATHMathSciNetGoogle Scholar
  24. [LL98]
    C. Lemieux and P. L’Ecuyer, Efficiency improvement by lattice rules for pricing asian options, Proc. 1998 Winter Simulation Conference, IEEE Press, 1998, pp. 579–586.Google Scholar
  25. [LL99]
    C. Lemieux and P. L’Ecuyer, A comparison of Monte Carlo, lattice rules and other low-discrepancy point sets, In Niederreiter and Spanier [NS99].Google Scholar
  26. [MC94]
    W. J. Morokoff and R. E. Caflisch, Quasi-random sequences and their discrepancies, SIAM J. Sci. Comput. 15(1994), 1251–1279.CrossRefzbMATHMathSciNetGoogle Scholar
  27. [MC95]
    W. J. Morokoff and R. E. Caflisch, Quasi-Monte Carlo integration, J. Comput. Phys. 122(1995), 218–230.CrossRefzbMATHMathSciNetGoogle Scholar
  28. [Nie92]
    H. Niederreiter, Random number generation and quasi-Monte Carlo methods, SIAM, Philadelphia, 1992.CrossRefzbMATHGoogle Scholar
  29. [NS95]
    H. Niederreiter and P. J.-S. Shiue (eds.), Monte Carlo and quasi-Monte Carlo methods in scientific computing, Lecture Notes in Statistics, vol. 106, Springer-Verlag, New York, 1995.Google Scholar
  30. [NS99]
    H. Niederreiter and J. Spanier (eds.), Monte Carlo and quasi-Monte Carlo methods 1998, Springer-Verlag, Berlin, 1999.Google Scholar
  31. [Owe95]
    A. B. Owen, Randomly permuted (t, m, s)-nets and (t, s)-sequences, In Niederreiter and Shiue [NS95], pp. 299–317.Google Scholar
  32. [Owe97a]
    A. B. Owen, Monte Carlo variance of scrambled equidistribution quadrature, SIAM J. Numer. Anal. 34 (1997), 1884–1910.CrossRefzbMATHMathSciNetGoogle Scholar
  33. [Owe97b]
    A. B. Owen, Scrambled net variance for integrals of smooth functions, Ann. Stat. 25 (1997), 1541–1562.CrossRefzbMATHMathSciNetGoogle Scholar
  34. [Owe98]
    A. B. Owen, Latin supercube sampling for very high dimensional simulations, ACM Trans. Model. Comput. Simul. 8(1998), 71–102.CrossRefzbMATHGoogle Scholar
  35. [Owe99]
    A. B. Owen, Monte Carlo, quasi-Monte carlo, and randomized quasi-Monte Carlo, In Niederreiter and Spanier [NS99].Google Scholar
  36. [PT95]
    S. Paskov and J. Traub, Faster valuation of financial derivatives, J. Portfolio Management 22(1995), 113–120.CrossRefGoogle Scholar
  37. [PT96]
    A. Papageorgiou and J. F. Traub, Beating Monte Carlo, Risk 9(1996), no. 6, 63–65.Google Scholar
  38. [PT97]
    A. Papageorgiou and J. F. Traub, Faster evaluation of multidimensional integrals, Computers in Physics 11(1997), 574–578.CrossRefGoogle Scholar
  39. [Rit96]
    K. Ritter, Average case analysis of numerical problems, Habilitationsschrift, Universität Erlangen-Nürnberg, Erlangen, Germany, 1996.Google Scholar
  40. [Rot54]
    K. F. Roth, On irregularities of distribution, Mathematika 1(1954), 73–79.CrossRefzbMATHMathSciNetGoogle Scholar
  41. [Sai88]
    S. Saitoh, Theory of reproducing kernels and its applications, Longman Scientific & Technical, Essex, England, 1988.Google Scholar
  42. [SJ94]
    I. H. Sloan and S. Joe, Lattice methods for multiple integration, Oxford University Press, Oxford, 1994.zbMATHGoogle Scholar
  43. [Sob69]
    I. M. Sobol’, Multidimensional quadrature formulas and Haar functions (in Russian), Izdat. “Nauka”, Moscow, 1969.Google Scholar
  44. [Spa95]
    J. Spanier, Quasi-Monte Carlo methods for particle transport problems, In Niederreiter and Shiue [NS95], pp. 121–148.Google Scholar
  45. [SW97]
    I. H. Sloan and H. Woźniakowski, An intractability result for multiple integration, Math. Comp. 66(1997), 1119–1124.CrossRefzbMATHMathSciNetGoogle Scholar
  46. [Wah90]
    G. Wahba, Spline models for observational data, SIAM, Philadelphia, 1990.CrossRefzbMATHGoogle Scholar
  47. [War72]
    T. T. Warnock, Computational investigations of low discrepancy point sets, Applications of Number Theory to Numerical Analysis (S. K. Zaremba, ed.), Academic Press, New York, 1972, pp. 319–343.Google Scholar
  48. [War95]
    T. T. Warnock, Computational investigations of low discrepancy point sets II, In Niederreiter and Shiue [NS95], pp. 354–361.Google Scholar
  49. [Woź]
    H. Woźniakowski, Efficiency of quasi-Monte Carlo algorithms for high dimensions, In Niederreiter and Spanier [NS99].Google Scholar
  50. [YH99]
    R. X. Yue and F. J. Hickernell, Robust designs for fitting linear models with misspecification, Statist. Sinica (1999), to appear.Google Scholar
  51. [Zar68]
    S. K. Zaremba, Some applications of multidimensional integration by parts, Ann. Polon. Math. 21(1968), 85–96.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Fred J. Hickernell
    • 1
  1. 1.Department of MathematicsHong Kong Baptist UniversityKowloon Tong, Hong Kong SARChina

Personalised recommendations